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Abstract

Xausa, Beghi, and Zanforlin (J. Math. Psychol. 45(4) (2001) 635) provide an account of perceptual organization based on their

‘minimal relative motion’ principle. They claim that this principle can account for the percept generated by a contracting bar that is

simultaneously translating laterally. We critique the mathematical analysis provided in the aforementioned paper. We conclude that

the ‘minimal relative motion’ principle, in the form presented, cannot adequately explain the percept reported by observers.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Xausa et al. (2001) report that a bar that is
contracting over time as it moves laterally appears to
be both rotating and translating into the frontal plane.
This is an interesting phenomenon. Although in theory a
number of percepts are compatible with this stimulus,
the human visual system consistently selects one
interpretation.
To account for this percept, Xausa et al. (2001)

postulate a ‘minimal relative motion constraint’. This
constraint as defined by Xausa et al. (2001) forces all
points to achieve a common speed that is set equal to or
larger than the length of the maximum velocity vector
present in the physical stimulus.
Under orthographic projection, points on the trans-

lating and contracting bar can achieve this common
motion by assuming an invisible motion component of
each point into the frontal plane. In reference frame
Oxyz; the motion of the midpoint ðMÞ in the frontal
plane is always smallest compared to all other points on
the stimulus; such a relationship between M and all
other points implies that M would exhibit a larger
motion into the frontal plane than any other point.
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There can be no combination of rigid rotation and
translation that would be compatible with this type of
motion of the bar.
2. Mathematical model

The stimulus that Xausa et al. (2001) describe is a bar
that contracts in the Oz direction as it translates in the
Ox direction, where Oxz is the frontal plane (Fig. 1).
Xausa et al. (2001) describe different ‘profiles’ of

contraction and translation, but our discussion will
cover all of these, without loss of generality.
This stimulus results in the percept of a bar

translating in depth (in the Oy direction) as it is rotating
in a plane perpendicular to the Ox-axis.
Xausa et al. (2001) state that the ‘‘minimal relative

motion principle minimize(s) the differences between the
length of the velocity vectors of ½y� points’’ (p. 640).
More specifically, they state that they add a motion
component in depth (along the Oy-axis) to every point
such that ‘‘the length of the resulting velocity vector is
constant in time and the same for all points’’ (p. 640).
Thus they assign motion in depth such that all points
move with equal speed, but not necessarily equal
direction.
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Fig. 1. Sketch of a bar PP0 moving laterally along the Ox-axis as it is

contracting around midpoint M: Dashed lines represent the (projec-

tively invisible) depth component. Q is an arbitrary point on the bar.

Based on the ‘minimal relative motion’ principle, velocity components

in depth closer to the Ox-axis ðvMyÞ have greater length than those

farther away ðvPyÞ:
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2.1. A relative coordinate system

In reviewer comments, the authors of Xausa et al.
(2001) provide an intuition on how they derive the
‘minimum relative motion constraint’. Xausa et al.
(2001) define a coordinate frame relative to P (Fig. 2a).
In this coordinate frame, P has the smallest velocity (i.e.
zero) whereas P0 has the largest velocity in the image
plane. Motion in depth is then assigned such that the
lengths of the resulting velocity vectors in this coordi-
nate frame are equal for all points. As a result, motion
in depth should be largest for P and smallest for P0

(Fig. 2b). Finally, the common (translation) component
of motion in depth is subtracted out, which appears to
leave a rotation of the bar in depth (Fig. 2c).
To minimize relative motion, Xausa et al. (2001)

define a ‘‘velocity length’’ (p. 640) that points on the
stimulus should possess

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2xmax þ 4v2zmax

q
; ð1Þ

where vxmax and vzmax are, respectively, the maximum
velocity in the Ox and Oz direction over time in the
Oxyz coordinate frame. vmax takes the above form since
the motion of P0 relative to P in the relative coordinate
system equals 2vzmax : The velocity component in depth is
then assigned to points on the bar in such a way that the
motion in the relative coordinate frame equals vmax for
all points.

v2QxðtÞ þ v2QyðtÞ þ v2QzðtÞ ¼ v2max; ð2Þ

where all values are known based on the physical
stimulus with the exception of vQyðtÞ:
After we obtain the velocity in depth vQyðtÞ from

Eq. (2) it is split up in a translational component and a
rotational component. The translational component is
set equal to the motion of the midpoint of the bar vMy:
The residual motion is the rotational component, and is
thus defined relative to vMy:
To express the speed of an arbitrary point Q on the

bar in relationship to its midpoint M and endpoint P;
Xausa et al. (2001) define

MQ

MP
¼ l; where � 1plp1 ð3Þ

from which Xausa et al. (2001) claim

vQzðtÞ ¼ lvPzðtÞ: ð4Þ

However, when introducing these equations, Xausa et al.
(2001) have changed from the relative coordinate system
to the absolute ðOxyzÞ coordinate system, passing
through a coordinate system that is relative to
ðvMx; vMy; 0Þ:
Vector lengths are not conserved under these co-

ordinate system changes. That is, subtracting out
common translations for all points does not conserve
the ratio of vector lengths between different points on
PP0; contrary to the intuition provided in Fig. 2. We
plot the speeds under these different reference frames in
Fig. 3 assuming vPx ¼ vPz in Oxyz:We also note that the
intuition provided in Fig. 2, where speed is constant in
the relative coordinate system, is different from Eq. (2),
where speed is constant in the absolute coordinate
system.
Fig. 3 shows that a constant common speed for all

points on the bar is maintained only in a reference frame
that moves relative to the absolute reference frame with
a velocity of ðvxmax ; 0;�vPzÞ or ðvxmax ; 0; vPzÞ: There is no
common constant speed in the other two reference
frames. It may appear that if not constant in Oxyz; v is
at least almost linear with l; allowing an interpretation
of this motion as a form of translation plus rotation.
However, this is due to the fact that jvj only conveys
information about speed, not direction. Since all three
curves in Fig. 3 describe the same motion, the predicted
non-rigidity of the motion is most apparent in the
nonlinearity of the curve relative to ðvMx; vMy; 0Þ: We
will illustrate the issue of non-rigidity from a different
perspective next.

2.2. The absolute coordinate system

It is our opinion that the problem with the argument
put forth by Xausa et al. (2001) arises when Xausa et al.
(2001) attempt to equalize the speed of all points on the
bar to some vmax: It follows from Eqs. (2) and (4) for any
definition of vmax that

jvy;lðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2max � v2PxðtÞ � l2v2PzðtÞ

q
; ð5Þ

where vPxðtÞ equals vx;lðtÞ for any l:
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Fig. 2. Sketch of the ‘minimum relative motion principle’ as outlined by Xausa et al. (2001). Motion is minimized in a coordinate frame relative to P

(a). Under the ‘minimum relative motion constraint’, perceived motion in depth should decrease as we move from P to P0 (b). Motion in depth is then

separated into a translational ðvyt ¼ vMyÞ and a rotational ðvyr Þ component relative to vMy (c). Adapted from reviewer comments by M. Zanforlin.

Fig. 3. Speed of points relative to vmax as a function of position ðlÞ in
three different reference frames. We assume vPx ¼ vPz in Oxyz: In a

reference frame whose velocity relative to the absolute reference frame

is ðvPx; 0;�vPzÞ; all points have a common speed vmax: However, this is

not the case in either the absolute reference frame or a reference frame

that moves with the midpoint M of the stimulus. We first obtain jvj in
the absolute reference frame Oxyz: We can then obtain jvj in the

relative reference frame used by Xausa et al. by subtracting

ðvPx; 0;�vPzÞ from all points or in a reference frame relative to the

midpoint M of the stimulus by subtracting ðvMx; vMy; 0Þ from all

points.
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It is easy to see that jvy;lðtÞj is maximal when l ¼ 0:
Thus jvMyðtÞj4jvy;la0ðtÞj: However, there is no combi-
nation of translation and rotation of a rigid object where
the midpoint M of an object has greater speed in depth
than any other point on the object. In that case the
stimulus should appear to ‘break’ at its midpoint.
Therefore, the ‘minimal relative motion’ principle, as
presented, cannot adequately explain the percept of
simultaneous translation and rotation of a rigid object
reported by observers.
Xausa et al. (2001) try to rescue the rigidity of the bar

by using signðlÞ to determine the sign of the rotational
component r of motion in depth

vyr;lðtÞ ¼ signðlÞjvy;lðtÞ � vMyðtÞj: ð6Þ

Xausa et al. (2001) choose this formulation based on
the direction of motion human observers report for the
top and bottom parts of the bar, rather than on any
mathematical considerations. However, given that the
translational component of motion in depth is equal for
all points, this implies that jvMyðtÞj is smaller than
jvy;la0ðtÞj for half of the points on the stimulus. This
directly contradicts Eq. (5).
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3. Conclusion

Based on the mathematical application of the ‘mini-
mal relative motion’ principle as set forth in Xausa et al.
(2001), a percept should be achieved that does not
correspond to what is reported in the experimental
section of that same paper. It is reported that subjects
perceive a mixture of translation in depth and rotation
in a plane perpendicular to the horizontal axis on
presentation of a contracting bar that is laterally
translating. In contrast, based on the mathematical
derivation supplied by Xausa et al. (2001), subjects
should not report the percept of a rotating bar receding
in depth.
Though the term ‘minimal relative motion’ may

suggest that motion is being minimized, not equalized,
Xausa et al. (2001) explicitly state that the ‘minimal
relative motion’ principle assigns motion in depth such
that ‘‘the length of the resulting velocity vector is
constant in time and the same for all points’’ (p. 640).
The non-rigidity of the predicted percept is not a

direct result of the particular ‘common motion’ vmax that
Xausa et al. (2001) have chosen. Choosing a different
‘common motion’ will not remediate the problem. It is
impossible for a rotating bar to have the same speed
everywhere while simultaneously remaining rigid.
Any account which equalizes the speed of all points

will run into the same problem. Such accounts have to
assume that the perceived motion into the frontal plane
of the midpoint M of an object is larger than the
perceived motion of any other point on the object.
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