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Abstract

In human object recognition, converging evidence has shown that subjects’ performance depends on their familiarity with an
object’s appearance. The extent of such dependence is a function of the inter-object similarity. The more similar the objects are,
the stronger this dependence will be and the more dominant the two-dimensional (2D) image-based information will be. However,
the degree to which three-dimensional (3D) model-based information is used remains an area of strong debate. Previously the
authors showed that all models with independent 2D templates that allowed 2D rotations in the image plane cannot account for
human performance in discriminating novel object views [1]. Here the authors derive an analytic formulation of a Bayesian model
that gives rise to the best possible performance under 2D affine transformations and demonstrate that this model cannot account
for human performance in 3D object discrimination. Relative to this model, human statistical efficiency is higher for novel views
than for learned views, suggesting that human observers have used some 3D structural information. © 1998 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

A basic component in three-dimensional (3D) object
recognition is a process that matches the input stimulus
to stored object representations in memory. The search
for a match, when viewpoint invariant features (e.g.
color or material) are absent, must be based on the
object shape. A major challenge for object recognition
is to understand how potential matches are verified
despite shape variations in the image due to rotations in
viewpoint.

Empirical evidence has shown that human object
recognition strongly depends on familiar views, a result
particularly pronounced for structurally similar objects
[2–5]. These studies leave open, however, the question
of how much 3D information contributes to object
recognition. In contrast, empirical evidence in support
of 3D model-based recognition suggests that object
recognition is viewpoint dependent only when major
object components disappear and new components
come into view, for structurally dissimilar objects [6]1.

The studies do not, however, resolve the possibility that
since the objects are dissimilar, a two-dimensional (2D)
based qualitative representation already suffices to dis-
tinguish an object from the rest within a large range of
viewpoint change.

1.1. View-approximation models

To clarify what the authors mean by 2D versus 3D
information, let us consider one class of models for
shape-based recognition, which the authors refer to as
view-approximation models. (The authors postpone
consideration of the more powerful view-combination
models to the Discussion. See [7] for a general discus-
sion of various classes of object recognition models.)
View-approximation models assume that views are ar-
bitrary samples, whose only link is a common label (e.g.
the name of the object). These views have come to be
associated with each other through experience. Thus,
such models are inherently viewpoint dependent. For
example, assume that an object is represented by two
independent views. The task is to decide whether a
novel view belongs to the object. The strong version of
view-approximation maintains that in order to recog-
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nize a novel view, a similarity measure is calculated
independently between this view and each of the two
stored views [8,4]. Recognition is a function of these
measurements. The simplest function is the nearest
neighbor scheme, where a match is based on the closest
view in memory. A more sophisticated scheme is the
Bayes classifier that combines the evidence over the
collection of views optimally.

A more flexible version of view-approximation is to
allow, in addition to combinations of the similarities,
transformations on each stored view. For example, a
novel 2D view can be translated and rotated in the 2D
image plane before matching with each of the stored
2D views. [1] showed that human observers exceeded
even the optimal model that used this strategy (which
the authors referred to as a ‘2D/2D ideal observer’ (2D
model/2D input)). Thus, the results excluded both the
strong and more flexible models above. The authors did
not, however, exclude view-approximation models with
even more flexible transformations. One example of the
2D/2D observer class is to allow 2D affine transforma-
tions to each of the templates before similarity compu-
tations. A 2D affine transformation is any linear
transformation that includes translation, rotation, scal-
ing and stretching in the image plane, which the au-
thors will define shortly. Such a 2D affine
transformation exactly characterizes 3D rotations of
2D planar objects under orthographic projection (see
[9] for a summary2) and approximates, in a small range,
depth rotations of 3D objects [10]. The primary pur-
pose of this paper is to test whether 2D affine transfor-
mations account for human performance for 3D object
recognition.

1.2. Distinguishing models experimentally: the ideal
obser6er approach

The authors approach is to first construct a 2D affine
model that gives rise to the best possible performance,
which the authors call the 2D affine ideal observer. The
authors then test whether this ideal observer accounts
for human performance or not. If not, the authors can
reject this ideal observer and all the models suboptimal
to it, as models for human object recognition.

In the following, the authors first derive the 2D affine
ideal observer. For quantitative comparison, the au-
thors describe three additional models that have been
proposed in the literature. First, the authors introduce
the model by [11] that matches two point sets using 2D

affine transformations. This model provides a particu-
larly simple approximation to the 2D affine ideal ob-
server. Second, the authors introduce a model by [12]
that recognizes a 2D image of a set of 3D points from
a single 2D template. Third, in order to compare with
the Generalized Radial Basis Functions (GRBF) model
in [1], the authors present an improved GRBF model
that adjusts the variance of its radial basis (Gaussian)
functions to search for the best result. Finally, the
authors compare human performance with these mod-
els in a 3D object discrimination task [1]. The task
requires observers to discriminate which of two objects
is more similar to a learned object. The task provides a
straightforward way of measuring the efficiency of the
human matching process for novel object views. The
authors use wire objects as the stimuli because they are
the simplest objects that obey the assumptions of these
models.

2. The computational models

In order to provide a clear context of what the
computational models are supposed to do, the authors
briefly describe the task that both the human observers
and models face [1]. The objects are bent wires whose
vertex feature points are assumed visible from all view-
ing angles with known correspondence (i.e. the feature
points are labeled). An image of an object is repre-
sented by the (x, y) coordinates of its feature points.
The object (termed prototype) is first learned from a
number of its images. Then a pair of objects are
generated from this prototype by adding independent
3D positional Gaussian noise at the feature points. One
object is called the target, whose Gaussian noise has a
fixed variance. The other is called the distractor, whose
variance is always larger. The task is to choose from the
two an object that is more similar, in Euclidean dis-
tance of the feature points, to the prototype object.

2.1. The 2D affine ideal obser6er

Here the authors summarize the derivation of the
Bayesian 2D affine ideal observer (details in Appendix).
Let us first consider the case of only one 2D template.
Assume that a template T and an input stimulus image
S are represented as:
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A 2D affine transformation to the template T is
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2 When a planar object is rotated in depth under orthographic
projection, the object is scaled in the image plane along the direction
perpendicular to the rotational axis. A 2D affine transformation can
also scale a 2D image along one direction. That is why 2D affine
transformation can exactly characterize any 3D rotation of a 2D
planar object.
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with XT={a, b, c, d, tx, ty} � (−�,�). The authors
assume that the stimulus image S is obtained by first
applying a 2D affine transformation to the template T,
then adding independent Gaussian noise N(0, sI2n),
where I2n is a 2n×2n identity matrix. Therefore the
probability P(S �T, X)=P(N=S− (A T+Tr)) Hence,
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&�
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where P(X) is the prior probability distribution of XT.
Assume that
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which means that the prior probability distribution of a
2D affine transformation to a template is a Gaussian
centered at the identity transformation. Given that the
six variables

(a,b,c,d,tx,ty)=XT� (−�,�) (6)

are independent of each other, the authors obtain the
following by integration:
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Note that under the assumption of the Gaussian
prior probability distribution P(X)=N(X0, gI6), g is
the only free parameter. When g�0, the prior becomes
a d-function and no transformation is allowed to the
template T. Only the template T, not even its 2D
rotations in the image plane are allowed in the match-
ing process. Since this might be over-restrictive, the

authors assume that the 2D rotations of the templates
are automatically available to the ideal observer. There-
fore, both g and the number of 2D rotations of the
template will be explored to search for the optimal
performance. The authors also assume that the ideal
observer knows the sequence of the feature points, but
not which is the head and which the tail, so both
possibilities will be considered.

2.2. 2D affine nearest neighbor model

In the above derivation, the prior probability of the
2D affine transformations is assumed to be Gaussian
centered at each of the learned templates and their 2D
rotations. Although the authors will search for the
optimal performance with this prior, it is informative to
know the ideal observer’s performance when it only
uses the 2D affine transformation that brings the stimu-
lus and template to the closest possible match. In other
words, the authors will consider the nearest neighbor
solution for the problem, for which [11] have an ana-
lytic derivation.

Their model assumes that the stimulus and template
are represented by 2D point features of known corre-
spondence. The similarity measure between S and T is
defined by the smallest Euclidean distance between the
two 2×n matrices (xi, yi)i=1

n after both images are
normalized to the same scale (a point that will be
returned to). Image S can undergo an arbitrary 2D
similarity transformation (rotation, translation and
scaling) and image T an arbitrary 2D affine transforma-
tion. They showed that the smallest squared Euclidean
distance D2 between the two images is:

D2(S, T)=1−
tr(S+S ·TTT)


T
2 , (14)

where tr [ · ] is the trace of a matrix, S+ =ST(SST)−1 is
the pseudo-inverse of S and ��T ��2= tr [TTT].

Only the Euclidean distance D, not the probability, is
defined between two images in this nearest neighbor
model. Thus, when there are multiple templates, either
the summation of the D2 themselves, or the summation
of exp(−D2/2s2) can be used for the similarity mea-
sure. The authors will use both in this paper and report
the one that gives rise to the better performance.

2.3. GRBF model

The authors also simulate an improved version of the
GRBF model originally presented in [8]. In [1], the
model stored a set of 2D images {Ti} of the prototype
object. When a pair of stimulus images {S1, S2} were
presented, the model chose the image with a larger
probability value from the following evaluation
function:
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where {ci} were obtained optimally when the learned
templates themselves were used as input stimuli.

Although s is the right number to use for the learned
views, it is not necessarily the best choice for the novel
views, since the model only approximates a novel view
using weighted Gaussian summations from the learned
views. In this paper, the authors will search for the
optimal value of s for the novel views by hand picking
that gives rise to the best performance, for each individ-
ual object.

2.4. The 3D/2D polynomial model

An important theoretical question in object recogni-
tion is the amount of available information in images,
from which the 3D structure of an object can be
determined. This is the so called shape-from-views
problem. The approach dates back to the classic work
of the four-points-three-views theorem of structure-
from-motion, in which [13] showed that three images of
four non-coplanar labeled points under orthographic
projection determine the 3D structure of the four points
(with a depth reversion ambiguity). The authors now
briefly review the state of the art of the shape-from-
views problem before introducing the model that is
closely related to the current study. To begin with, [13]
further showed that if a fourth image is available, it can
be verified as coming from the same object or not.
While this assumes that the object structure is rigid, [14]
showed that the rigidity of a labeled e-point non-planar
structure can be verified from three images by checking
a 6×n matrix. If the matrix has a full rank, then the
structure is non-rigid, otherwise it is.

When only two images S and T are available, the
authors can write a matrix (assuming no translation):
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If rank (M)=3, then S and T are from the same
object and the object can undergo arbitrary 3D affine
transformations. If rank (M)\3, then the two images
are not from the same object [15–19]. In the recogni-
tion scheme in [15], for example, the two stored images
serve as the basis for recognition. When a third image
is available, it can be verified as coming from the same
object (the third image can be obtained by applying a
certain affine transformation to the object before ortho-
graphic projection) or not.

Bennett et al. (1993) [12] have proposed a specific
implementation for object verification with two images

(one stored image T, one input image S). This is
equivalent to checking whether the two images are
consistent with an object that can undergo arbitrary 3D
affine transformations. This model is appealing since its
implementation is simple (only a polynomial calcula-
tion), it is specifically proposed as a candidate model
for human object recognition and its proposed Gaus-
sian noise model is closely related to the study in this
paper.

It starts with four points in each image, one point is
at the origin (0, 0) to handle the translation. The images
S and T belong to the same (3D affine) object if and
only if:
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where di, j=xi,Sxj,S+yi,Syj,S−xi,Txj,T−yi,Tyj,T. Similar
to the theorem in [11], this recognition polynomial does
not specify how the polynomial changes its value when
the feature points are perturbed with noise. Bennett et
al. (1993) [12] suggest using R2 as a measure of the
goodness of fit between the two images. When an image
has more than four points, the polynomial is divided
into subsets of four points each and that the overall
similarity is the summation: R(x1, · )2+R(x2, · )2+…
When an object has multiple stored templates, the
above summation will also be across these templates.

3. Experimental methods

The experimental paradigm is described in detail in
[1]. The authors review its basics here. In a training
phase, a subject first learned a 3D prototype wire object
from 11 viewpoints under orthographic projection with
monocular viewing. For the subsequent testing phase,
two objects were created by adding independent 3D
positional Gaussian noise to the vertices of the learned
prototype. The variance of the noise added to one
object, called the target, was fixed and that added to the
other, the distractor, was always larger. The two objects
were presented to the subject from the same viewpoint.
The task in the testing phase was to pick the object that
was more similar in shape and size to the learned
prototype3. The distractor standard deviation was
varied using a staircase procedure [20] in order to find
the observer’s threshold at the 75% correct. The smaller

3 In order to define a proper probability measure so that an ideal
observer can be provably optimal in the task, the authors define
image similarity as the Euclidean distance between their vertex coor-
dinates. Therefore, the more two images differ in size, the less similar
they are. An ideal observer exploits this, therefore it is only fair to
allow human subjects the same.
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this threshold is, the better the performance will be.
Two conditions were randomly intermixed from trial to
trial: learned views—the two objects were presented
from one of the 11 learned viewpoints; and novel
views—the objects were presented from an arbitrary
viewpoint in 3D rotation. The thresholds for these two
conditions were tracked in parallel.

Four classes of objects were used. They were, in the
increasing order of object regularity (Fig. 1): Balls—
five balls randomly arranged in 3D; Irregular—the five
balls were connected by four cylinders into a chain;
Symmetric—the above irregular object were bilaterally
symmetric; and V-Shaped—the two cylinders on each
side of the above symmetric object were collinear, so
the object itself became planar and symmetric. When
independent noise was added to perturb the positions
of the balls, the cylinders connecting them were ad-
justed accordingly. So the V-Shaped objects were no
longer perfectly planar, symmetric and collinear, nor
were the symmetric objects precisely symmetric. There
were three objects in each class. Three naive subjects
participated in the experiment.

The four models described above were given the
same task as the subjects. Each object’s image was
represented by an ordered sequence of the (x, y) coordi-
nates of the wire vertices. Only the direction of the
ordered sequence was assumed unknown, which is
equivalent to a reflection ambiguity in correspondence
between the feature points. The standard deviation of

the Gaussian noise added to the target object was
assumed known by the four models. The authors simu-
lated the discrimination performance of the four mod-
els, using the same objects as seen by the human
observers.

4. Predictions

For the Balls, Irregular and Symmetric objects, the
authors expect that both human and the 2D affine ideal
observer will perform better for the learned than for the
novel views. In fact, for the learned views, the 2D affine
ideal observer is the true ideal observer and human
observers are necessarily less efficient due to internal
noise. The question is, are they relatively more efficient
for the novel views? In other words, are humans rela-
tively better for the novel views than for the learned
views as compared with the 2D affine ideal observer? A
‘yes’ answer implies that humans generalize from the
learned to novel views better than the 2D affine ideal
observer does. It further implies the 2D affine ideal
observer cannot completely account for the human
performance.

The authors are particularly interested in the Irregu-
lar and Symmetric objects and any differences between
them. For the Balls objects, the authors expect that
human subjects’ performance will be poor. For the
V-Shaped objects, the 2D affine ideal is the true ideal
observer in the sense that it accurately models 3D
viewpoint variations for planar objects (see footnote 2).
These objects therefore serve as a control to verify that
the ideal observer is doing the right thing.

If the performance of human observers relative to
that of the 2D affine ideal observer (defined as the
statistical efficiency [21]) is better for the novel views
than for the learned views, then humans must have
used a better recognition strategy than the 2D affine
ideal. The reason is that the affine model only approxi-
mates the learned views, since the objects are not
planar. If humans use a strategy of 2D affine transfor-
mations with independent 2D templates, then their
performance relative to the 2D affine ideal for the novel
views must be less than or equal to that for the learned
views.

Due to the internal noise in the human visual system,
the statistical efficiency for the learned views will be
necessarily below 100%. Therefore, the statistical effi-
ciency for the novel views may also be below 100%,
even when it is greater than for the learned views. As
long as the efficiency is higher for the novel views than
for the learned views, the human observers have either
employed a 2D transformation to the templates more
complex than 2D affine transformations, or have not
treated the templates as independent but effectively

Fig. 1. Samples of the experimental stimuli. Top to bottom: Balls,
Irregular, Symmetric and V-Shaped. (From [1], permitted by Vision
Res.).
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Fig. 2. Performance of the 2D affine ideal observer as a function of g—the standard deviation of the Gaussian prior probability distribution,
without additional rotational copies of any template (m=1). The authors plot the Balls and Irregular objects together since they are treated the
same by the model. The error bars are the standard errors (some are too small to be visible).

combined them to reconstruct the (partial) 3D struc-
ture of the object (view-combination, [15]).

The authors will employ a conservative (worst case)
test for the 2D affine ideal and the GRBF model in
the sense that the authors will select parameters that
give rise to the best performance for the novel views.
The models’ performance for the learned views will
be obtained with the parameters optimal for the
novel views. (The parameters optimal for the novel
views usually do not yield the best performance for
the learned views.) In this way, the statistical effi-
ciency for the novel views will be the lowest possible.
This makes it more difficult to satisfy the hypothesis
that the statistical efficiency for the novel views is
higher than for the learned views. Consequently, if
such a hypothesis is supported from the data, it will
be evidence that the human observers use more 3D
knowledge than implicit in the 2D affine transforma-
tions. The evidence will be strong in the sense that
the best performance for the novel views is obtained
by the experimenters, rather than by the models
themselves. This is because it is difficult for the mod-
els to automatically search for the best performance
when the two viewing conditions are randomly inter-
mixed and no feedback is provided.

Finally, the polynomial model [12] predicts the
same performance for the learned and novel views.
This is because once the learned template is stored as
the coefficients for the polynomial, the polynomial’s
mean value and variance are completely determined
by the (x, y) coordinates of the feature points in the
input image, learned and novel views alike. The vari-
ance associated with coding these (x, y) values can be
assumed equal. Therefore, the model predicts that the
human performance is viewpoint independent. It can-
not account for human performance if human perfor-
mance is different for the learned and novel views.

5. Results

5.1. The 2D affine ideal obser6er

Simulations were conducted to carry out the task for
each of the 12 objects, learned and novel views respec-
tively, with 2000 trials for each condition. These simula-
tions were conducted for different g values and different
numbers of 2D rotated copies (m) of each template
(g=0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100; m=1, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19,
20, 40, 60, 80). It turns out that the smallest m (=1) and
sufficiently large g values give rise to the best perfor-
mance for the novel views (Figs. 2 and 3). The authors
selected the model’s best performance for the novel views
(Balls: m=1, g=10; Irregular and Symmetric: m=1,
g=10; V-Shaped: m=1,g=100). Fig. 4 shows the
statistical efficiency of the human observers relative to
this 2D affine ideal observer (its derivation is in [1]). The
authors conducted the Wilcoxon order test [22] for the
18 pairs of matched comparisons between the learned
and novel views, for the Irregular and Symmetric objects
(three objects each, three observers). The authors found
that the efficiency for the novel views is statistically
higher than for the learned views (PB0.02; T=38,
N=18, z=2.07). This suggests that 2D affine transfor-
mations cannot account for the human performance.

There is a significant difference in statistical efficiency
across the four types of objects (F(3,6)=18.25, PB
0.002). Of particular interest is whether there is a
difference between the Irregular and Symmetric objects.
The efficiency for the Symmetric objects is higher than
for the Irregular objects (t(2)=4.10, PB0.03). This
suggests that the subjects may indeed have exploited
symmetry in the task. This implies that subjects may take
advantage of symmetry in 3D, since the 2D image of a
novel view of a Symmetric object is almost always
asymmetric.
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Fig. 3. Performance of the 2D affine ideal observer as a function of g, for both m=1 and 5 For clarity, the error bars are not shown.

In summary, the results that the human observers
were more efficient for the novel than for the learned
views and for the Symmetric than for the Irregular
objects imply that the 2D affine ideal observer may not
account for human performance. Three-dimensional
structural information may have been exploited by the
human visual system.

5.2. The remaining models

Fig. 5 shows the performance of the human observ-
ers, the 2D affine ideal observer, the 2D affine nearest
neighbor model [11] (WW in short), the GRBF model
[8] and the 3D/2D polynomial model [12]. The perfor-
mance of the 2D affine nearest neighbor model was

obtained by taking the summation of exp(−D2(Ti,
S)/2s2), rather than D2(Ti, S) directly4. The, subopti-
mal performance of the 2D affine nearest neighbor
model is in part due to the fact that the model normal-
izes the size of each image first before computing the
Euclidean distance. Thus the size information is not
used at all, whereas in the studys task it is informative.
The larger the noise is, the more likely the size is larger.
This problem, however, does not apply to the rest of
the models.

The authors make the following remarks. (1) The
3D/2D polynomial model’s performance was very sensi-
tive to the correspondence ambiguity, its threshold at
least doubled when the correspondence is wrong. In
contrast, the 2D affine model was much less sensitive to
this ambiguity. This is because in the affine nearest
neighbor model a normalization procedure is built in to
align the two images by 2D linear transformations. In
the 3D/2D polynomial model, however, no normaliza-
tion procedure is available. When the correspondence is
wrong, the model treats the input image as from a
completely different object. This yields a poor polyno-
mial evaluation and leads to a chance performance for
the model at many instances, which was documented by
the studys simulations. For this reason, the statistical
efficiency will be plotted for the 2D affine nearest
neighbor model with the correspondence ambiguity and
the 3D/2D polynomial model with only the exact corre-
spondence. (2) As expected, the 2D affine nearest neigh-
bor model’s threshold performance for the learned
views was better than for the novel views, whereas the
polynomial model’s performance was about the same
for both learned and novel views. (3) The 2D affine

Fig. 4. Statistical efficiency of the human observers relative to the 2D
affine ideal observer for the four types of objects. The error bars are
standard errors between the three observers’ scores. (Since the
Wilcoxon analysis between the learned and novel view conditions is
for matched pair comparison for each object and within each ob-
server, the error bars cannot directly reflect the variance in the
analysis. This applies to similar analysis below).

4 Using the metric of exp(−D2(Ti, S)/2s2), the average thresholds
for the first three object types were 0.46 and 0.90 cm, for the learned
and novel views, respectively. They were 0.37 cm for the V-shaped
object, for both learned and novel views. Using the D2(Ti, S) metric,
they were 1.06, 1.07, 0.37 and 0.37 cm. So the first metric yields better
performance.
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Fig. 5. Discrimination threshold of the human observers for the learned and novel views, for the 2D affine ideal observer, the [11] model with the
two way correspondence ambiguity (WW2way), the GRBF model, the 3D/2D polynomial model [12] with the exact correspondence (BHP) and
with the two way ambiguity correspondence (BHP2way). The threshold is defined as the standard deviation of the Gaussian noise added to the
distractor object at 75% correct performance, for learned and novel views, respectively.

nearest neighbor model’s performance for the V-Shaped
objects was identical for the learned and novel views, as
it should.

Fig. 6 shows human observers’ statistical efficiency
relative to the 2D affine nearest neighbor model. For
the Irregular and Symmetric objects, the efficiency for
the novel views is greater than for the learned views
(Wilcoxon test, Irregular: T=7, z=1.84, PB0.05;
Symmetric: T=0, z=2.66, PB0.005). This means that
the 2D affine nearest neighbor matching cannot ac-
count for human data.

Fig. 6 also shows the human efficiency relative to the
GRBF model, whose performance was obtained by
hand picking the Gaussian variance that gives rise to
the best performance for the novel views for each
individual object. For all types of objects, the efficiency
for the novel views was greater than for the learned
views (Wilcoxon test, Balls: T=8, z=1.72, PB0.05;
Irregular: T=9, z=1.60, PB0.05; Symmetric or V-
Shaped: T=0, z=2.66, PB0.005). This means that
the GRBF model, even when the standard deviation of
its basis functions was allowed to (uniformly) vary to
search for the best performance, still cannot account
for the human performance.

Fig. 7 shows human observers’ statistical efficiency
relative to the polynomial model with exact correspon-
dence. The absolute values of the efficiencies are high,
but the overall pattern of the efficiency is similar to the
3D/2D (3D model/2D input) and 3D/3D (3D model/
3D input) ideal observers (in [1], fig. 8, p. 561). The
higher efficiencies for the learned views than for the
novel views with the Balls, Irregular and Symmetric
objects suggest that the 3D/2D polynomial recognition
model, which predicts equal efficiencies, cannot account
for human performance.

6. Discussion

The authors have derived an analytic formulation of
a Bayesian model that gives rise to the best possible
performance under 2D affine transformations. By using
this model’s performance as a benchmark for human
performance, the authors have shown that the 2D affine
ideal observer fails to account for human 3D object
discrimination. Relative to this model, human statistical
efficiency is higher for novel views than for learned
views. If the statistical efficiencies had been 100% for
both learned and novel views, the authors could have
concluded with absolute certainty that the mechanisms
used by human observers in this task is equivalent to a
2D affine observer. To what extent is it likely that a 2D
affine observer (not ideal) could account for human
performance? Excluding this possibility rests on at least
five assumptions.

6.1. 2D obser6ers for human 3D object recognition?

First, the conclusion that the observers did not use a
2D affine strategy, based on comparison of efficiencies
between the novel and learned views, depends on the
way in which internal noise in the visual system oper-
ates. For example, imagine that human observers are
2D affine ideal observer plus additive internal noise N.
Then, according to Eqn. (E9) in [1], statistical efficiency
E is the variance difference between the distractor and
the target for the ideal observer Ds I over that for the
human observer DsH=Ds I+N. It is reasonable to
assume that N is the same for the novel views (n) and
the learned views (l). Consequently,

En=
Dsn

I

Dsn
I +N

, El=
Ds l

I

Ds l
I+N

. (18)
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Fig. 6. Statistical efficiency of the human observers relative to the 2D affine nearest neighbor model and the GRBF model.

The authors have

En

Et

=
1+

N
Ds l

I

1+
N

Dsn
I

\1,(Dsn
I\Ds l

I\0). (19)

This means that additive noise in itself increases the
ratio of the efficiency for the novel views over the
learned views. Although the equivalent internal noise
thus derived is inconsistent between learned and novel
views and between object types (Balls: learned views
0.75 cm2, novel views 2.19 cm2; Irregular: 0.22, 0.45;
Symmetric: 0.14, 6.45), this only means that addition is
unlikely the correct noise model. The authors cannot,
however, exclude all possible ways in which internal

noise increases the relative efficiency for the novel
views.

The second assumption is that each of the six vari-
ables in the affine transformation obeys a Gaussian
prior probability distribution with the same variance. It
is a problem because 2D affine transformation only
approximates a 3D object rotation, therefore no ‘cor-
rect’ prior distributions ever exist. The choice is only a
matter of convenience. On the other hand, however, the
authors found that the performance of the 2D affine
ideal observer stabilizes at optimal values so long as the
variance of the Gaussian distributions are sufficiently
large. It appears therefore that the specifics of the prior
probability distribution are not critical.

The third assumption is that subjects did not learn
the novel views during testing. If they did, these views
could be used as additional 2D templates. Such learn-
ing would improve their performance for the novel
views more than for the learned views. In contrast, the
2D affine ideal observer has only the fixed set of 2D
templates. The authors considered this possibility in [1]
by creating an additional 2D template for the 2D/2D
ideal observer (with 2D rotations) after each test trial.
The template was the average of the two test images
and was a close approximation to a view of the proto-
type object since the two test images were from the
same viewpoint. The incorporation of this learning
improved the 2D/2D ideal observer’s performance, but
the efficiencies for the novel views of the Symmetric
and V-Shaped objects were still above 100%. The au-
thors did not simulate the 2D affine ideal observer with
learning in this paper, but given the already small
efficiency difference between the novel and learned
views, the authors expect that the 2D affine ideal
observer with learning could match human perfor-
mance. In fact, however, when the authors tested the

Fig. 7. Statistical efficiency of the human observers relative to the
polynomial recognition model.
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third assumption, an analysis of the experimental data
did not show learning by the human subjects [1].

The fourth assumption is that shaded images did not
contribute an unfair advantage to the human observers.
The human subjects had shading and occlusion infor-
mation in addition to the vertex positions, whereas the
models have available only the (x, y) vertex coordi-
nates. The authors counted in [1] that the number of
occlusion events was about the same for the learned
and novel views and also argued that the shading
information should be about the same for the learned
and novel views. Therefore, it is unlikely that this
additional image information alone should be responsi-
ble for any differential effect between the learned and
novel views. One could argue that a differential effect
can be obtained if subjects use only the vertex coordi-
nates for the learned views and use everything possible
for the novel views. The authors think that this scenario
is possible but unlikely given that the learned and novel
views in the human experiment were randomly inter-
mixed. The authors are currently using silhouette im-
ages and thin wire objects to directly address this issue.

A fifth assumption is that the class of objects used in
this study is representative of typical visual tasks that
require fine shape discriminations. The objects were
notably peculiar in their lack of substantial occlusions.
It is true that previous studies used exactly the same
type of objects to argue for a 2D template-based ap-
proach [8,4], therefore it is best to use the same objects
to test the claim. But it remains a challenge to all
computational studies to address everyday object recog-
nition when occlusion is commonplace. On the other
hand, the way in which an object is represented in the
models, aside from the shading and partial occlusions,
is not crucial for the results. So long as the authors
perturb object vertex positions with Gaussian noise, the
task is defined and the ideal observer performance is
determined, no matter what representation is used. The
choice of vertex (x, y) coordinates was a matter of
mathematical convenience. If the authors represent the
objects in terms of the lengths and relative angles of the
cylinders, the authors would obtain the same ideal
performance.

An additional point can be made from the symmetry
condition. The authors noted that the efficiency is
greater for the Symmetric than for the Irregular objects.
Is this because the Symmetric objects are ‘simpler,’ in
the sense that the viewing space is half as much for the
Symmetric objects? This cannot explain why Symmetric
objects have a greater efficiency, because the ideal
observer’s viewing space is also halved. In fact, the
essence of ideal observer analysis and the measure of
statistical efficiency is to take into account (or to nor-
malize) any differences between different stimuli. There-
fore, any efficiency difference reflects representation
and processing differences in the brain, not in the

stimulus. Therefore, the fact that the efficiency is higher
for the Symmetric than for the Irregular objects indi-
cates that subjects used 3D information of object sym-
metry in recognition.

Taken together, the results strongly suggest that 2D
affine transformations are insufficient to account for
the ability of humans to compensate for viewpoint
changes in this task. What are the alternatives?

6.2. Is 3D structural information used for object
recognition?

The fact that human statistical efficiency relative to
the 2D affine ideal observer is greater for the novel than
for the learned views, despite the best efforts to find the
lowest efficiency possible for the novel views, indicates
that human observers incorporate more knowledge of
the regularities between views than that implicit in 2D
affine transformations. The results also suggest that 2D
affine nearest neighbor matching cannot account for
the human performance. The fact that an ‘ideal’ prior
probability distribution on all possible 2D affine trans-
formations is unknown makes this result valuable in its
own right. The authors can rank in increasing order of
greater power and flexibility in approximating 3D novel
object views from 2D template views, the 2D/2D ideal
observer, the learning 2D/2D ideal observer, the Radial
Basis Functions (RBF) model (in [1]) and in this paper
the 2D affine nearest neighbor model, the GRBF model
and the 2D affine ideal observer model. The results
suggest that the human observers may use yet a more
sophisticated strategy that incorporates knowledge of
3D structure, perhaps by means of view-combination
[7].

Models of view-combination have either explicit or
implicit knowledge that views arise from 3D object
rotations. Three-dimensional constraints are built into
the memory representations. By intelligently combining
stored views, these models can, in principle, find nearly
exact matches to novel views with orthographic projec-
tion [7].

Consider first an extreme and ideal case in which
there is an explicit 3D model in memory. The most
straightforward identification scheme verifies a match
by translating, scaling and rotating an explicit 3D
model of the object in memory, projecting the result in
a 2D image plane and then using a measure of similar-
ity to test for a satisfactory match with the 2D input
(see for example [23]). Liu et al. (1995) [1] referred to
the statistically optimal version of this model as a
3D/2D ideal observer. Despite its intuitive simplicity, a
straightforward implementation of this scheme is in
general not computationally feasible. An elegant solu-
tion (view-combination) to the computational difficulty
was proposed by [15], who showed that as few as two
views are sufficient to carry out the verification process
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by checking the linear dependence of a third view on
the two views. Recognition here assumes, albeit implic-
itly, that the object has 3D affine structure. In general,
view-combination models exploit the inherent regularity
in the collection of images resulting from a projection
of an object.

The authors noted that that the statistical efficiency is
greater for the Symmetric than for the Irregular objects
implies that the human observers may have used 3D
structural information, since 3D symmetry is inherently
a 3D property. The authors cannot rule out, however,
the possibility that 2D affine transformations account
for substantial, though incomplete, portions of the hu-
man efficiency. This is illustrated by the fact that the
statistical efficiencies for both the learned and novel
views are below 100% and that their difference is no
longer substantial, even though statistically significant.

It is important to note that ideal observer analysis is
crucial to the conclusions. When object recognition
performance falls off as an object rotates away from the
learned views, it is difficult to distinguish whether the
result can be accounted for by a view-approximation
model [4], without an ideal observer analysis. The de-
pendence of human performance on viewpoint might
simply reflect the information for the task in the stimu-
lus and not the specific functional constraints of the
visual system. Until stimulus information is adequately
accounted for, such a problem will remain unsolved.
The ideal observer analysis makes it possible to distin-
guish these possibilities and suggests that view-approxi-
mation is not the whole story.
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Appendix A. The 2D affine ideal observer

Without loss of generality, the authors consider the
case of only one stored template. Assume that the

template T and the input stimulus image S are repre-
sented as:

T=
�xT

1 xT
2 · · · xT

n

yT
1 yT

2 · · · xT
n

�
=
�XT

YT

�
, S (20)

=
�xS

1 xS
2 · · · xS

n

yS
1 yS

2 · · · yS
n

�
A 2D affine transformation to the template T is

AT+Tr=
�a

c
b
d
�

T+
�tx

0
0
ty

��1 1
1 1

· · ·
· · ·

1
1
�

(21)

with XT
 (a, b, c, d, tx, ty) � (−�, �).
If the authors assume that the stimulus image S is

obtained by first applying a 2D affine transformation to
the template image T and then adding independent
Gaussian noise N(0, sI2n) to the resultant image, the
authors have

P(S �T,A,Tr)=P(N=S− (AT+Tr)). (22)

Let us calculate S− (A T+Tr) first. Without loss of
generality, the authors assume that the template image
T is centered at the origin, i.e. Sn

i=1 x i
T=Sn

i=1 y i
T=0.

The authors calculate the squared Euclidean distance of
��S− (A T+Tr)��2. More specifically, the squared Eu-
clidean distance is


Tx+aXT+bYT−XS
2+
Ty+cXT+dYT−YS
2

(23)

For the first term, given that Six i
T=S iy i

T=0, the
authors have


Tx+aXT+bYT−XS
2

=
Tx−XS
2+
aXT+bYT
2−2(aXT · XS+bYT · XS)
(24)

The first term on the right side of the Eq. (24) is

ntx
2−2tx%xS

i +XS
2 =n [(tx− x̄)2+var(xS)],

where

x̄=
%xS

i

n
, var(xS)=

xS
2

n
− (x̄)2.

The last two terms in Eq. (24) is a2XT
2 +b2YT

2 +
2abXT · YT−2(aXT · XS+bYT · XS). So the total
squared distance is

n [(tx− x̄)2+ (ty− ȳ)2+var(xS)+var(yS)]

+XT
2 (a2+c2)+YT

2 (b2+d2) (25)

+2(ab+cd)XT · YT

−2(aXT · XS+bYT · XS+cXT · YS+dYT · YS). (26)

The authors write

Q

�XT

YT

�(XT YT)=
�XT · XT XT · YT

YT · XT YT · YT

�
, (27)
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QK=
�XT

YT

�(XS XS)
(QK1 QK2). (28)

Then the authors can write the squared distance as

n [(tx− x̄)2+ (ty− ȳ)2+var(xS)+var(xS)] (29)

+(a b)Q
�a

b
�

−2(a b)QK1+(c d)Q
�c

d
�

−2(c d)QK2. (30)

Let

6x

�a

b
�

, 6y

�c

d
�

.

Completing the square e.g.

6x
TQ6x−26x

TQK1� (6x−K1)TQ(6x−K1)−K1
TQK1

gives

n [(tx− x̄)2+ (ty− ȳ)2+var(xS)+var(yS)]+6%xTQ6%x

−K1
TQK1+6%y

TQ6%y−K2
TQK2,

where

v’x
6x−K1

and

v’y
6y−K2.

A.1. Uniform prior

Assume that P(X)=C−1, where C is a normaliza-
tion constant such that

1=
&

P(X) dX (31)

this effectively assumes that XT
 (a, b, c, d, tx, ty) has
a uniform distribution in R6 and that C is necessarily
infinite. So

P(S �T)=
&�

−�

P(S �X, T)P(X) dX (32)

=
1

(2ps2)nC
&

dX

×exp
�

−

S−A(a,b,c,d)T−Tr(tx,ty)
2

2s2

�
(33)

Let

tx� t %x
 tx− x̄, (34)

ty� t %y
 ty− ȳ, (35)

a�a %
a−K11, (36)

b�b %
b−K21, (37)

c�c %
c−K12, (38)

d�d %
d−K22. (39)

The integral is:

P(S �T)=
1
C

exp
�

−
n(var(xS)+var(yS))− tr(KTQK)

2s2

�
(40)

1
(2ps2)n

&�
−�

da %db %dc %dd %dt %xdt %y

×exp
�
−

nt %x2+nt %y2+6%xQ6%x+6%yQ6%y
2s2

�
. (41)

Now the authors use

1
(2ps2)N/2

&�
−�

dx exp
�

−
xTMx

2s2

�
= (det(M))−1/2,

where x is a length–N vector and M a symmetric
N×N matrix. (Verify this by diagonalizing M and
changing variables, then the integral just becomes a
product of N independent Gaussian integrals.) Finally,
the integral is

P(S �T)=
1

nC(2ps2)n−3det(Q)

exp
�tr(KTQK)−n(var(xS)+var(yS))

2s2

�
. (42)

A.2. Gaussian prior

Alternatively, the authors can assume that XT
 (a,
b, c, d, tx, ty) obeys a Gaussian probability distribution

P(X)=
1

(2pg2)3 exp
�

−
(X−X0)T(X−X0)

2g2

�
(43)

A reasonable assumption about X0 is that this affine
transformation is an identity transformation, with
X0

T= (1, 0, 0, 1, 0, 0). The argument of the integral
becomes proportional to

n [(tx− x̄)2+ (ty− ȳ)2+var(xS)+var(yS)]+ (44)

+(a b)Q
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�
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� g−2

n+g−2

�
(47)

+n(var(xS)+var(yS)) (48)

+6x
*TQ %6x*+6y

*TQ %6y*−K1
*TQ(Q %)−1QK1

*T

−K2
*TQ(Q %)−1QK2

*T+2g−2, (49)

where
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Q %
Q+g−2I2,QK*=QK+g−2I2
(QK1* QK2*), 6*

=6−Q %−1QK*. (50)

Similar arguments as before give

P(S �T)

=exp
�

−
var(xS)+var(yS)+ (x̄2+ ȳ2)/(ng2+1)

2s2/n
�

(51)

×exp
�tr(KTQ(Q %)−1QK)−2g−2

2s2

�
×

1
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da %db %dc %dd %dt %xdt %y (52)

×exp
�

−
(n+g−2)(t %x2+ t %y2)+6%xQ %6 %x+6%yQ %6 %y

2s2
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P(S �T)=
1

(2ps2)n−3g6(n+g−2)det(Q %)

exp

:
−

var(xS)+var(yS)+
x̄2+ ȳ2

ng2+1
2s2/n

;
(54)

×exp
�

−
2g−2− tr(K*TQ(Q %)−1QK*)

2s2

�
. (55)

As g�� this goes to the former expression of Eq. (42).
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