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Summary

Neurofibrillary tangles (NFT) containing tau are a hall-
mark of neurodegenerative diseases, including Alz-

heimer’s disease (AD). NFT burden correlates with
cognitive decline and neurodegeneration in AD. How-

ever, little is known about mechanisms that protect
against tau-induced neurodegeneration. We used a

cross species functional genomic approach to analyze
gene expression in multiple brain regions in mouse, in

parallel with validation in Drosophila, to identify tau

modifiers, including the highly conserved protein
puromycin-sensitive aminopeptidase (PSA/Npepps).

PSA protected against tau-induced neurodegenera-
tion in vivo, whereas PSA loss of function exacerbated

neurodegeneration. We further show that human PSA
directly proteolyzes tau in vitro. These data highlight

the utility of using both evolutionarily distant species
for genetic screening and functional assessment to

identify modifiers of neurodegeneration. Further in-
vestigation is warranted in defining the role of PSA

and other genes identified here as potential therapeu-
tic targets in tauopathy.
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Introduction

Pathological aggregation of the microtubule-associated
protein tau is a defining feature of many neurodegener-
ative diseases collectively called tauopathies (Ingram
and Spillantini, 2002; Lee et al., 2001). An essential role
of tau in these disorders became evident with the dis-
covery that tau mutations cause inherited forms of
FTD with parkinsonism linked to chromosome 17
(FTDP-17) (Hutton et al., 1998; Ingram and Spillantini,
2002; Lee et al., 2001). The process of tau accumulation,
paired helical filament (PHF) assembly, and aggregation
is incompletely understood. While tau hyperphosphory-
lation clearly accelerates neurodegeneration (Grundke-
Iqbal et al., 1986; Kosik and Shimura, 2005; Lee et al.,
1991), the role of other posttranslational modifications,
including proteolysis (Gamblin et al., 2003; Kosik and
Shimura, 2005), ubiquitination (Bancher et al., 1991;
Gong et al., 2005; Iqbal and Grundke-Iqbal, 1991), and
nitration and glycosylation (Gong et al., 2005; Liu et al.,
2002; Wang et al., 1996), as well as the function of the
tau amino terminus in this process, remain unclear
(Amadoro et al., 2004; Chen et al., 2004; Gamblin et al.,
2003). A number of studies in vitro have identified poten-
tial proteases that are active against tau, including cal-
pain, caspases, and thrombin (Arai et al., 2005; Gamblin
et al., 2003; Mercken et al., 1995). However, their rela-
tionship to neurodegeneration observed in tauopathy
is not known. Thus, identification of genetic factors
that influence tau aggregation or degradation in vivo
and modulate tau-induced neurodegeneration would
have important implications for understanding tau-in-
duced neurodegeneration and designing potential ther-
apeutic interventions (Kosik et al., 2002; Kosik and
Shimura, 2005; Lee et al., 2001; Price et al., 1998; Santa-
cruz et al., 2005).

Here, we moved in a stepwise fashion from a large-
scale microarray gene expression experiment to func-
tional confirmation and identification of a pathway of
tau processing that impacts neurodegeneration (Fig-
ure 1). We performed a genetic screen in mice express-
ing a common, dominant FTD-causing mutation in
human tau, and used microarrays to identify gene ex-
pression changes in different brain regions. A subset
of the gene expression changes was validated by both
Northern blot analysis and in situ hybridization (Figure 2).
We then performed functional validation in a well-char-
acterized Drosophila model of tauopathy (Jackson
et al., 2002), with particular focus on one of the genes,
PSA (also known as Npepps), since it is a largely cyto-
solic aminopeptidase with very high expression in the
CNS (McLellan et al., 1988; Tobler et al., 1997). PSA
also is involved in the degradation of neuropeptide
transmitters in vitro (Safavi and Hersh, 1995), but previ-
ously has not been demonstrated to affect tau. We
found that PSA was upregulated in the cerebellum of
mutant mice expressing the tauP301L transgene, and
we hypothesized that since its expression was changed
in a region relatively resistant to neurodegeneration, it
might represent part of a transcriptional compensatory
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mechanism. We demonstrate that altering PSA expres-
sion has marked effects on tau-induced neurodegener-
ation in vivo in Drosophila. Reduced PSA expression
increased neurodegeneration and tau aggregation,
whereas overexpression of PSA inhibited neurodegen-
eration, concomitant with a reduction in tau immuno-
reactivity. These observations suggest that PSA can
degrade tau in vivo via its aminopeptidase activity. We
further confirmed that PSA catalyzes degradation of
human tau in a cell-free system. Interestingly, Western
blotting in human postmortem brain showed that PSA
expression is higher in cerebellum than in frontal cortex
in both FTD subjects and controls, suggesting a correla-
tion between PSA levels and regional susceptibility to
neurodegeneration that warrants further investigation.

Results

Regional Microarray Analysis of TauP301L Mice

We conducted a comprehensive regional microarray
analysis of transgenic mice expressing human tauP301L

(Lewis et al., 2000), the most common human FTD muta-
tion (Figure 1). These mice display many of the patho-
logic features of human tauopathies, including neurode-
generation in spinal cord and forebrain beginning

Figure 1. Schematic Depicting Experimental Procedures Used in

the Study

Step 1: tissues were dissected from tauP301L and control nontrans-

genic animals. Step 2: RNA was isolated and combined into tissue-

and litter-specific pools. RNA quality was verified prior to further ex-

perimentation. Step 3: microarray hybridizations and data analysis

were performed resulting in the list of candidate genes. Step 4: iden-

tified gene expression changes were confirmed in independent an-

imals. Expression of PSA was evaluated using in vitro and in vivo

studies.
between 7 and 9 months of age (Ishizawa et al., 2003;
Lewis et al., 2000; Lin et al., 2003). We compared gene
expression in animals at 6 months of age, prior to the on-
set of a clinical phenotype or cell loss. At this stage, sub-
tle biochemical abnormalities such as pathological tau
phosphorylation can be identified in the absence of
frank neurofibrillary tangles (NFT) and cell loss (Ishizawa
et al., 2003; Lewis et al., 2000). This approach provided
two advantages: first, it minimized potential confounds,
such as changes in gene expression due to altered cell
composition or cell loss, or factors secondary to neuro-
degeneration, such as malnutrition (Geschwind, 2000;
Mirnics, 2001; Mirnics and Pevsner, 2004). Second,
this approach made it more likely that we would identify
biochemical changes during early phases of the neuro-
degenerative process that could potentially be more re-
versible than alterations identified during the later
stages of disease. We also reasoned that some of the
changes in gene expression occurring in brain regions
relatively unaffected by neurodegeneration, such as
the cerebellum, might reveal specific compensatory
mechanisms that were involved in protecting that re-
gion. Thus, we performed a regional microarray analy-
sis, comparing cerebral cortex, brainstem, cervical spi-
nal cord, and cerebellum in transgenic and control
nontransgenic animals using 24 Agilent Developmental
mouse microarrays, which contain over 20,000 distinct
probes. In each transgenic versus control comparison,
three biological replicates, each representing at least
three pooled littermates, were performed (Figure 1).
A total of 31 probe sets that were differentially regulated
between control and transgenic mice were identified
using a combination of two analytic approaches; one
was based on the false discovery rate, and the other
was based on an empirically derived 99.5% confidence
interval (Table 1). Half of the gene expression changes
identified, which comprised 16 genes (11 enriched in
tauP301L animals and five enriched in control animals)
(Table 1), were found in the cerebellum.

We performed Northern blot analysis to provide quan-
titative confirmation of a randomly selected subset of six
genes in independent nonlittermate animals of each ge-
notype (Figure 2B). In all cases, the changes observed
were significant (p < 0.01) and consistent with the micro-
array results. None of the changes were large, ranging
between 1.5- and 2.5-fold, consistent with the mild phe-
notype at this stage. We also confirmed a subset of the
changes by in situ hybridization in at least three inde-
pendent nonlittermate animals of each genotype, con-
firming each of the differentially expressed genes tested
(Figure 2). We specifically focused on confirming cere-
bellar expression changes, which were of particular
interest as potential targets that could ameliorate tauop-
athy (e.g., Figures 2A and 2C; see below). Several genes
were confirmed to be upregulated in cerebellum of
mutant animals, including Bcl2, Gtpbp3, Rab9, and Psa,
while others, such as Vegfa and Mel13, were downregu-
lated in mutant animals (Figure 2; up in control).

Several genes that were differentially expressed in
brain regions more involved with neurodegeneration
in human FTD and the mouse model, such as those dif-
ferentially expressed in the brainstem or spinal cord,
had been implicated previously in neurodegenerative
conditions such as amyotrophic lateral sclerosis (ALS)
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Figure 2. Confirmation of Microarray-Identified Genes Altered in TauP301L Brain

(A) In situ expression patterns of about half of the genes up- (left panel) and downregulated (right panel) in tauP301L cerebellum. At least three

nonlittermate animals of each genotype were used, and the images depicted were taken from sagittal sections of six month old brains hybridized

to 35S-labeled antisense cRNAs.

(B) Northern blot confirmation of microarray results in six genes of varying abundance using total RNA isolated from at least three independent

nonlittermate animals of each genotype. Results are expressed as fold change for at least three animals each for tauP301L and control mice. The

directions of expression patterns for all genes were in agreement with microarray data and were significant using two-tailed t tests (p < 0.01).

Error bars, mean 6 standard deviation.

(C) Sagittal sections show that Psa is specifically enriched in tauP301L cerebellum (arrows) relative to other regions, consistent with microarray

and Northern data. SC, spinal cord; CB, cerebellum.
and AD. As an example, vesicle-associated membrane
protein-associated protein B (Vapb) expression is al-
tered in tauP301L brainstem, and mutations in the human
Vapb gene result in spinal muscular atrophy and ALS
(Nishimura et al., 2004). Motor neuron disease resem-
bling ALS is observed in a significant subset of FTD pa-
tients, including those with the P301L mutation (Lee
et al., 2001; Lomen-Hoerth, 2004). Thus, the identifica-
tion of Vapb as a potential modifier of tauopathy pro-
vides a new potential molecular link between these con-
ditions (Nishimura et al., 2004). Expression of insulin,
insulin-like growth factors (IGFs), and insulin-like growth
factor binding proteins (IGFBPs) is altered in many neu-
rodegenerative diseases, including AD (Tham et al.,
1993) and ALS (Wilczak et al., 2003), and Igfbp2 was
downregulated in tauP301L brainstem. Activation of com-
plement is associated with an early response in AD
(Shen and Meri, 2003), and complement component
1q g polypeptide (C1qg) is significantly increased in
tauP301L spinal cord, with a similar trend in the cortex
and brainstem of tauP301L mice (Table 1).

In contrast, it was interesting to note that several
genes enriched in tauP301L cerebellum were known to
have protective properties in neurodegenerative condi-
tions. As an example, Bcl2 is an extensively studied
outer mitochondrial membrane protein that has anti-
apoptotic properties in a variety of systems, including
the CNS (Gross et al., 1999), and Lims1 is crucial for
cell survival and protection of cells from apoptosis
(Zhang et al., 2004). Other genes regulated in the cere-
bellum, including Psa, had not previously been impli-
cated as potentially neuroprotective, and were interest-
ing as they represented potentially novel modifiers of
tau or tau-induced neurodegeneration (Figure 2). Since
cerebellum is among the least affected brain regions
in AD and FTD brain, as well as in tauP301L mice, and
several identified changes involve genes with neuro-
protective roles, we hypothesized that the differential
regulation in some cases might reflect transcriptional
compensation that protected against tau-induced neu-
rodegeneration. Gain-of-function alleles of such genes
would be expected to be suppressors of tauopathy,
whereas loss-of-function of alleles would be expected
to exacerbate tau-induced neurodegeneration.

PSA as a Suppressor of Tau-Induced

Neurodegeneration in Drosophila
Misexpression of the longest 4-repeat isoform of human
tau in Drosophila recapitulates pathological tau aggre-
gation and neurodegeneration, including the formation
of NFT and PHF when pathologically phosphorylated
by a form of GSK-3b (Jackson et al., 2002). In this model,
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Table 1. Genes Differentially Expressed between P301L Tau and Control Brains

Gene names are listed (http://www.ncbi.nlm.nih.gov) alongside the Genbank Accession numbers representing the sequences used to construct

the microarray probes. CX, cortex; BS, brainstem; SP, spinal cord; CB, cerebellum. The column designated ‘‘Method’’ indicates the criteria used

for selection of regulated genes. FC, 1.4-fold change in all biological replicates. FDR, 0.05% false discovery rate. Genes confirmed with Northern

blot (NB) analysis or in situ hybridizations are indicated in the penultimate column. Genes highlighted in yellow were in both mouse and fly.
tau expression produces a ‘‘rough’’ eye phenotype that
reflects underlying neurodegeneration, as assessed by
immunohistochemical staining in the larval eye disc, as
well as neuronal loss and disorganization of the retina
(Doglio et al., 2006; Jackson et al., 2002). This model is
relevant to disease, as nearly half of the known FTD-
causing mutations alter tau splicing by increasing the
ratio of 4-repeat tau to 3-repeat tau (Hutton et al., 1998;
Jackson et al., 2002; Lee et al., 2001). In addition, ex-
pression of mutant tauP301L induces a similar phenotype
(e.g., Figures 3 and 4). We therefore used this fly model
as an initial screen to provide a cross-species functional
assessment. Remarkably, one of the genes, PSA, was
identified in an independent pilot screen for modifiers
of tau-induced neurodegeneration using the first fifty
lethal transposon insertions on the third chromosome,
which was obtained from the Bloomington Stock Center
(http://flystocks.bio.indiana.edu). We obtained addi-
tional lines of PSA and two other genes identified from
the microarray screen, Vapb and Eef1a1, which also
modified neurodegeneration caused by tau misexpres-
sion in the fly eye (Figures 3 and 4).
These observations provided an initial functional as-
sessment and confirmation that the genes identified in
the microarray screen in mouse play potential functional
roles in modifying tau-induced neurodegeneration since
the tau interactions in fly were consistent with dysregu-
lation in tauP301L mice (Table 1). A loss-of-function muta-
tion of fly Vapb, DVAP-33A (Pennetta et al., 2002), sup-
pressed neurodegeneration, consistent with its known
role in human ALS (Nishimura et al., 2004) and the cur-
rent microarray screen, in which it was upregulated in
the brainstem, a vulnerable brain region (Figure 3B). Fur-
thermore, a loss-of-function allele of EF1a48d, a fly ho-
molog of Eef1a1, which was upregulated in the brain-
stem and thus postulated to confer tau vulnerability in
the mouse, also suppressed the tau eye phenotype
(Figure 3C), consistent with its potential role in sensitiz-
ing cells to apoptosis (Duttaroy et al., 1998). We also
identified a transposon insertion strongly enhancing
the tau eye phenotype that was in the 50 UTR of Dro-
sophila Psa (dPsa; Figure 4B). Similar results were ob-
tained using a bona fide mutation (Schulz et al., 2001),
consistent with the hypothesis based on microarray data

http://flystocks.bio.indiana.edu
http://www.ncbi.nlm.nih.gov
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that overexpression of PSA would suppress, whereas
loss of function of PSA would exacerbate, neurodegen-
eration (Figure 4B).

PSA Loss of Function Enhances Tau-Induced
Neurodegeneration in Drosophila

Given the high expression of PSA in brain (McLellan
et al., 1988; Tobler et al., 1997) and the recognition of
the importance of the N terminus of tau in aggregation,
coupled with a paucity of knowledge as to the proteo-
lytic processing of tau (Gamblin et al., 2003; Lee et al.,
2001), we focused our further efforts on PSA. To more
directly assess the mechanism by which PSA activity
affected tau-induced neurodegeneration in vivo, we ex-
amined whether PSA loss of function affected the Dro-
sophila tau eye phenotype using several distinct lines.
In contrast to the mild rough eye observed with tau alone
(Figure 4A), tau expressed in combination with a trans-
poson insertion in the 50 UTR of dPSA produced a mark-
edly enhanced phenotype (Figure 4B). Identical results
were obtained using a large deletion of the PSA locus
(data not shown). To assess whether PSA modifies the
tau phenotype in a specific fashion, as opposed to hav-
ing more general effects on neurodegenerative or cell
death phenotypes, PSA loss- and gain-of-function lines
were crossed with flies expressing a form of mutant hunt-
ingtin or the cell death gene reaper. No modification of
either phenotype was observed (Figure 5), suggesting
that the effect of PSA is not due to a generalized effect
on cell death, but rather due to a more specific effect
on tau.

PSA Expression Affects Tau Levels
and Neurodegeneration

To explore the relationship of PSA to tau pathology fur-
ther, we next examined tau expression and distribution
in vivo in transgenic flies. Mild loss of photoreceptor
neurons was produced by the human tau transgene,
along with aberrant neuronal polarity, as described in
detail previously (Jackson et al., 2002) (Figure 4D). Tau
expression in a mutant dPsa background produced
a more severe phenotype (Figure 4E). In contrast, low-
level overexpression of dPSA reversed tau-induced

Figure 3. Suppression of the gl-TauWT Phenotype by Mutations in

Eef1a1 and DVAP33A

(A–C) SEM images. The mild rough eye phenotype produced by one

copy of gl-Tau (A) is suppressed in the presence of a piggyBac ele-

ment allele of Eef1a1 (B) or by a mutation of DVAP33A (C). Geno-

types: (A), w; gl-TauWT/+; (B), w; gl-TauWT/+; eIF-1Ac04533/+; (C),

DVAP33A448/+; gl-TauWT/+. Scale bar, 100 mm.
neurodegeneration and abnormalities of polarity (Fig-
ure 4F). We engineered new fly lines directly expressing
tau under control of the glass (gl) promoter (Hay et al.,
1995). The mild neurodegenerative phenotype induced
by tau alone (Figure 4G) was suppressed by overexpres-
sion of dPSA (Figure 4H), whereas the phenotype of the
gl-dPSA eye was normal (Figure 4I). We next examined
whether dPSA overexpression affected tau levels using
immunohistochemical analysis of larval eye discs.

Figure 4. Psa Loss of Function Enhances, Whereas Psa Overex-

pression Suppresses, Tau-Induced Degeneration in the Eye

(A–C) SEM images showing enhancement of the gl-TauWT pheno-

type (A) when expressed in trans to a P element allele of Psa (B),

which has no phenotype on its own (C).

(D–F), Confocal images of adult retina stained with TRITC-phalloidin

(red) and anti-lamin D0 (green). Photoreceptor loss and disorganiza-

tion caused by gl-TauWT (D) are enhanced in trans to a PSA mutation

(E) but suppressed when Psa is overexpressed at low levels using

hs-PSA at 25�C.

(G–I) SEM images demonstrating suppression of the gl-TauWT phe-

notype (G) using a direct fusion gl-Psa transgene (H), which has no

eye phenotype on its own (I).

(J–L) Confocal images showing reduction of tau staining in third-in-

star larval eye disc by Psa coexpression. Blue, anti-Elav; red, T14;

green, anti-dPsa. Anterior is shown toward the left. In the presence

of gl-TauWT, tau expression (red) is apparent beginning at the mor-

phogenetic furrow toward the left of the panel and is robust through-

out the eye disc, even in posterior portions of the disc (J). When gl-

Psa is coexpressed, however, posterior portions of the disc

(bracket) show only residual tau (K). The gl-Psa transgene alone

shows low levels of Psa staining (green), as expected (L). Scale

bars, 100 mm ([A]–[C], [G]–[I]), 10 mm ([E]–[H]).
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Staining of the eye disc enables comparison of cells that
have just begun to coexpress tau and dPSA (near the
morphogenetic furrow) with those that have been ex-
pressing the two transgenes longer (toward the poste-
rior of the disc). Although tau expression was apparent
throughout the eye disc (Figure 4J), coexpression with
dPSA resulted in loss of the majority of tau staining in
posterior portions of the disc (bracket in Figure 4K).
The gl-dPSA disc was normal, with low levels of dPSA
detected in the weak lines selected for use in these stud-
ies (Figure 4L). These data demonstrate that overex-
pression of dPSA led to a substantial reduction of tau
protein in parallel with its apparent neuroprotective ef-
fect and suggest that this reduction in tau could underlie
dPSA’s modulation of tau-induced neurodegeneration.

PSA Robustly Suppresses the P301L Mutant Tau

Phenotype
We next compared the effects of dPsa overexpression in
eyes expressing tauWT and tauP301L in order to ascertain
whether PSA was active against mutant tau, which is
more pathogenic and prone to aggregation than wild-
type tau (Arrasate et al., 1999; Rizzu et al., 1999).
Whereas mild suppression of the gl-TauWT phenotype
(Figure 6A) was observed with coexpression of gl-
dPSA (Figure 6B), the gl-TauP301L phenotype (Figure 6C)
was more dramatically suppressed by gl-dPSA
(Figure 6D). Mild photoreceptor loss and aberrant polar-
ity produced by gl-TauWT (Figure 6E) were largely sup-
pressed by coexpression of gl-dPSA (Figure 6F). More-
over, the apparent reduction of tau protein by dPSA
overexpression that was apparent at earlier stages (Fig-

Figure 5. Manipulationof Psa Expression Has No Effecton Polygluta-

mine or reaper Phenotypes

(A–C) SEM images showing phenotype of GMR-GAL4: 2X(UAS-htt-

Q1201-78) alone (A) or in trans to a Psa mutation (B) or a hs-PSA trans-

gene driven at 25�C. (C). PSA loss of function or misexpression had

no discernible effect on the polyglutamine phenotype.

(D–F) SEM images showing phenotype of GMR-reaper alone (D) or in

trans to a PSA mutation (E) or a hs-PSA transgene (F). The reaper

phenotype also was unaffected by alterations in Psa expression.

Scale bar, 100 mm.
ure 4) was also evident in the adult retina: the photore-
ceptor abnormalities induced by gl-TauWT were accom-
panied by both diffuse and focal accumulation of tau
(Figure 6E), whereas coexpression with dPSA resulted
in a more diffuse pattern of tau staining (Figure 6F). Sim-
ilarly, dPSA suppression of the tauP301L phenotype
(Figure 6G) was accompanied by dramatic reductions
in tau immunoreactivity (Figure 6H). We next compared
the apparent reductions in both tauWT and tauP301L

Figure 6. Psa Regulates Both Wild-Type and Mutant Tau Pheno-

types

(A–D) SEM images comparing suppression of the gl-TauWT pheno-

type (A) when coexpressed with gl-dPsa (B) and suppression of

the gl-TauP301L phenotype (C) when coexpressed with gl-dPsa (D).

(E and F) Confocal images comparing suppression of the wild-type

and mutant tau retinal phenotypes by coexpression of Psa. Red,

TRITC-phalloidin; green, T14. The ommatidial polarity and mild

rhabdomere loss associated with gl-TauWT (E) are suppressed

when coexpressed with gl-dPsa (F); moreover, T14 staining is less

abundant and more diffuse. The rhabdomere phenotypes associ-

ated with gl-TauP301L (G) also are suppressed when coexpressed

with gl-dPsa (H), and T14 immunoreactivity is markedly reduced.

Scale bars, 100 mm ([A]–[D]); 10 mm ([E]–[H]).

(I) Western blot analysis demonstrating reduced steady state tau

levels by coexpression of dPsa. Results shown are derived from

densitometric analysis of three separate blots. Each bar represents

mean 6 SEM (n = 3). *p < 0.05; **p < 0.001, ANOVA + Bonferroni’s

comparison. A representative blot showing signals for T14 and

b-tubulin is shown.

(J) Western blot analysis comparing effects of Psa on tauP301L at a

variety of different epitopes. Reduction of the amino-terminal T14

signal was accompanied by an epitope located within the more

C-terminal proline-rich region (Tau5) as well as reduction of a confor-

mation-dependent phosphoepitope (AT8).
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levels observed using immunohistochemistry and West-
ern blotting (Figures 6I and 6J). Representative Western
blots showed reduced levels of both tauWT and tauP301L

in flies coexpressing dPSA; these differences are ob-
served with antibodies recognizing several distinct epi-
topes in tau (Figures 6I and 6J). Densitometric analysis
revealed significant reductions in both tauWT (p < 0.05)
and tauP301L (p < 0.001) levels by coexpression of dPsa
(Figure 6I). These findings demonstrate that PSA is a pre-
viously unidentified modifier of neurotoxicity induced by
tau misexpression or human disease-causing mutations
and can diminish tau accumulation in vivo.

PSA Digests Tau In Vitro

The known function of PSA as an aminopeptidase, com-
prising over 90% of the aminopeptidase activity in the
brain (McLellan et al., 1988), and the diminution of tau
immunoreactivity in parallel with PSA overexpression
observed here suggested that PSA acts directly on the
amino terminus of tau via its peptidase activity. How-
ever, it was plausible that PSA had no direct interaction
with tau, and was acting via cleavage of another inter-
mediary. We therefore determined whether recombinant
human PSA could cleave the longest isoform of human
tau in a cell-free system. After 4 hr of incubation with
PSA, full-length tau was partially diminished to w65%
of its original level, concomitant with the appearance
of low-molecular weight, immunoreactive products
likely representing the products of partial digestion (Fig-
ures 7A and 7B). Over the next 16 hr, this process con-
tinued, until after 18–20 hr of incubation, tau was di-
gested completely by PSA. This process was inhibited
by the specific PSA inhibitor puromycin and the more
general aminopeptidase inhibitor bestatin (Figures 7C
and 7D), providing confirmation that the observed tau
degradation was due to the protease activity of PSA.
Quantification of Western blots indicates that 90% of
tau was digested by PSA, and that up to 90% of the
tau was prevented from degradation by the inhibitors
(Figure 7D). The observation that purified human PSA
can directly cleave and significantly diminish human tau
in vitro is consistent with data from Drosophila in vivo.

PSA Expression in Human Cortex and Cerebellum
We performed Western blotting using protein extracts
from postmortem cortex and cerebellum of FTD cases
(n = 6) and human controls (n = 6; see Table S1 in the-
Supplemental Data) to assess PSA protein levels in hu-
man brain. Remarkably, PSA expression was elevated
5-fold in the cerebellum as compared with frontal cortex
in both controls and FTD cases (Figure 8A; normalized to
b-tubulin). Comparison of PSA levels between FTD and
controls showed a small but significant elevation of
PSA in frontal cortex in FTD brains (see Figure S1 in
the Supplemental Data). Immunohistochemistry con-
firmed previous observations that PSA is expressed pri-
marily in neurons (Hui and Hui, 2003; Minnasch et al.,
2003; Schonlein et al., 1994), as demonstrated by colo-
calization with the neuronal nuclear marker NeuN (Fig-
ures 8B and 8C). The qualitative immunohistochemical
data support the more quantitative Western blot data,
indicating that at the cellular level, PSA is increased in
human cerebellum neurons relative to frontal cortical
neurons (Figure 8).
Discussion

Here we use microarray analysis to identify genes whose
expression is altered in conjunction with patterns of re-
gional vulnerability in a mouse model of FTDP-17. We
provide independent confirmation of a subset of these
genes by Northern blotting and in situ hybridization and
perform in vivo functional validation in another animal
model, Drosophila. This work provides a clear proof of
principle for validation of genetic screens using model
systems and allows us to more firmly establish a func-
tional role for one of the identified genes, Psa. Although
Psa was known to be highly brain-enriched, to our
knowledge, its role vis-a-vis tau degradation or modifi-
cation of tau-induced neurodegeneration has not been
characterized previously. We show that in the fly model,
dPsa modulation of neurodegeneration is not likely to be
a phenomenon related to a general or nonspecific sup-
pression of cell death, as its overexpression or mutation

Figure 7. PSA Degrades Recombinant Tau Protein In Vitro

(A) Kinetics of PSA digestion of Tau as monitored by immunoblot

analyses by Tau-46.1. The amount of protein loaded was 15 ng per

lane. Tau was incubated with PSA for the indicated times and tau

degradation was detected by Western blotting with mouse anti-

tau antibody Tau-46.1.

(B) Densitometric analysis of the percentage of degradation of tau

protein with time. The curve represents the densitometric averages

of N-HT40 with time where tau protein incubated with PSA for 0 hr

represents 100%. This figure shows that the approximate half-life

of recombinant tau protein in the presence of PSA is about 4 to 5 hr.

(C) Western blot illustrating proteolysis of human tau by human PSA

and inhibition by puromycin and bestatin. Blots (10 ng protein/lane)

were probed with mouse anti-human Tau-7. Lanes 1 and 2, tau +

PSA for 0 and 20 hr, respectively. Lanes 3 and 4, tau + PSA in the

presence of 1 and 2 mM puromycin, respectively. Lane 5, tau +

PSA in the presence of 2 mM bestatin.

(D) Quantitative analysis indicating the extent of digestion and inhi-

bition. Bar graphs represent densitometric averages of three blots.

Bar 1, tau + PSA for 0 hr represents 100%. Bar 2, percent tau di-

gested following incubation with PSA for 20 hr. Bar 3, percentage

of tau digested following incubation with PSA for 20 hr in the pres-

ence of 2 mM puromycin. Bar 4, percentage of tau digested follow-

ing incubation with PSA for 20 hr in the presence of 2 mM bestatin.

Blots were run in triplicate. Densitometric values represent the

mean 6 1 SD.
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has no observable effect on two other fly phenotypes.
Furthermore, we show that human PSA can directly de-
grade human tau in vitro via its aminopeptidase activity,
which is consistent with in vivo data in the fly showing
that PSA overexpression coincides with loss of tau im-
munoreactivity.

Identification of genes likely to have functional rele-
vance based on data derived from microarray experi-
ments is often difficult, so independent confirmation
and some degree of functional validation are needed
to provide confidence in the significance of microarray
results. However, confirming modifiers of late-onset
neurodegenerative phenotypes in mice can be burden-
some; hence, intermediate steps involving careful prior-
itization of potential targets are necessary. Although
genetic modifiers of tauopathy in the fly have been iden-
tified (Shulman and Feany, 2003), functional validation of
these modifiers in mammalian systems has not yet been
reported. The combination of two distinct genetic

Figure 8. PSA is Elevated in Human Cerebellum as Compared with

Frontal Cortex

(A) Western blot demonstrating reduced PSA levels in human cortex

based on densitometric analysis of three separate blots. Each bar

represents the mean 6 SD (n = 6). PSA is elevated in cerebellum

as compared with frontal cortex (single factor ANOVA; a < 0.05;

p = 0.004). Shown below the graph is a representative Western

blot showing signals for PSA from cerebellum (first four lanes) and

cortex (last four lanes). F indicates FTD specimens; C, control spec-

imens. (B and C) Representative immunohistochemical images from

cortex (B) and cerebellum (C) in the tissue microarray. Purple/blue,

NeuN; brown, PSA. Scale bar, 100 mm.
screens in model organisms described here provides
an efficient way to approach discovery of novel disease
modifiers. Data derived from in vivo studies with animal
models and a cell-free system suggest that PSA may
play a pivotal role in protection from tau-induced neuro-
degeneration, most likely by direct cleavage of tau. Tau
levels are inversely correlated with PSA levels in vivo in
the fly, and purified human PSA cleaves tau in a cell-
free system. These data validate the use of Drosophila
to screen for potential modifiers of disease, as this
model organism provides an efficient and economical
means for in vivo functional assessment of disease
modifiers identified by microarray screening in mice.

In contrast to Psa, expression of Vapb, a vesicle traf-
ficking protein, was elevated in tauP301L mouse brain-
stem, and thus this gene was considered as a potential
enhancer or mediator of tau-induced neurodegenera-
tion. This finding was notable as mutations in Vapb
cause autosomal dominant motor neuron disease (Nish-
imura et al., 2004), supporting its potential involvement
in neurodegeneration. It is also important to note that
clinically apparent motor neuron disease is observed
in 15% of patients with FTDP-17, and more have sub-
clinical, pathological signs of motor neuron degenera-
tion (Lee et al., 2001; Lomen-Hoerth, 2004). Here we
show that Vapb mRNA was upregulated in a vulnerable
region in tauP301L mice, whereas a loss-of-function mu-
tation of the fly homolog suppressed the tau phenotype
in the fly. Hence, Vapb provides a potential link between
tauopathy and motor neuron disease in FTD that is
worthy of further investigation.

Eef1a1, a ubiquitously expressed component of the
translation initiation complex, was also identified in
this study as being upregulated in the brainstem. Previ-
ous literature suggests that it may serve as a pro- or anti-
apoptotic factor in different systems (Chen et al., 2000;
Duttaroy et al., 1998; Talapatra et al., 2002). These
data are consistent with the notion that elevated expres-
sion of Eef1a1 is associated with susceptibility to tau-
induced neurodegeneration. A loss-of-function allele of
the Drosophila homolog strongly suppressed the tau
phenotype, consistent with the notion that Eef1a1 is
a prodegenerative factor.

Deciphering which of the observed changes in a mi-
croarray study are most relevant to the neurodegenera-
tion observed in the human disease is a complex task
(Geschwind, 2000; Small et al., 2005). Here we have ap-
plied a powerful filter to the data, focusing our down-
stream efforts primarily on expression changes in a re-
gion that, despite expressing high levels of the mutant
gene of interest, exhibits no overt signs of neurodegen-
eration. In this manner, we were able to identify several
genes with putative neuroprotective roles.

It has been suggested previously that amino terminal
caspase-mediated cleavage of tau in vitro and in AD
cases may be involved in NFT formation (Amadoro
et al., 2004; Gamblin et al., 2003). Moreover, FTDP-17
mutations may render tau protein less susceptible to
proteolysis, increasing the propensity of tau to form
aggregates, consistent with the protective effects of
PSA-mediated tau proteolysis. The observation here
that Psa can also control tau toxicity in vivo supports
the identification of this enzyme as a regulator of tau-in-
duced neurodegeneration, perhaps analogous to the
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role of proteolytic processing of other potentially toxic
moieties, such as proteolytic processing of amyloid by
presenilins or secretases (Hardy and Selkoe, 2002; Siso-
dia and St George-Hyslop, 2002).

A large body of evidence indicates that regulation of
amyloid precursor protein (APP) and its proteolytic frag-
ments plays a critical role in AD pathogenesis (Sisodia
and St George-Hyslop, 2002). Similarly, it is clear from
the human FTD-causing mutations that even relatively
subtle changes in tau isoform levels can cause neurode-
generation (D’Souza and Schellenberg, 2005). Con-
versely, turning off an inducible mutant tauP301L trans-
gene after the onset of severe tau pathology in the
mouse, thereby reducing mutant tau levels, can reverse
the neurodegenerative process (Santacruz et al., 2005).
Thus, it is tempting to speculate that factors that act to
modulate tau levels or splicing, such as PSA, are candi-
dates for playing a causal or contributory role in disease,
and may represent potential targets for development of
therapeutics. As an example, factors that lead to PSA
downregulation in humans would be expected to in-
crease tau, which in turn could contribute to disease
susceptibility. The relatively high level of PSA expres-
sion, while correlative, within human cerebellar neurons
(Figure 8A), which are less affected than cerebral cortex
in AD and FTD, is consistent with this hypothesis. In ad-
dition, preliminary experiments assessing tau deposi-
tion and PSA levels by immunohistochemistry in post-
mortem cortical tissues from AD and FTD patients
suggests an inverse relationship between PSA expres-
sion and tau deposition in neurons (data not shown).
Similarly, we postulate that the trend toward a relative
increase in PSA in postmortem FTD frontal cortex rela-
tive to controls (Figure S1) may reflect its higher level
of expression in neurons surviving after a long course
of disease. Neurodegeneration in FTD is known to pri-
marily affect the superficial cortical laminae, so even
within brain regions, different neurons are likely to
show distinct patterns of vulnerability to neurodegener-
ation. The data described here provide a set of initial ob-
servations highlighting a potential role for PSA that war-
rant further analysis in other models and in human
patient samples.

It is notable that PSA has been coimmunoprecipitated
with APP (Schonlein et al., 1994) and colocalized around
senile plaques in the cerebral cortex and hippocampus
of AD brain (Minnasch et al., 2003). Although PSA does
not directly alter APP levels in vitro, it is tempting to
speculate that PSA could also provide a link between
amyloid deposition and tau pathology observed in
AD. While this and other questions relevant to the causal
role of PSA in a spectrum of human diseases involving
tau will be important to answer in future, its discovery
as a protease potentially mediating tau degradation is
an important step forward in understanding the patho-
genesis of tauopathies and developing new therapeutic
interventions in these fatal neurodegenerative diseases.

Experimental Procedures

Mice, Tissue Dissections, and RNA Isolation

TauP301L mice (Lewis et al., 2000) were housed in groups of up to four

and kept on a 12 hr light/dark cycle at 22�C. Food pellets and water

were available ad libitum. All animal protocols were in accordance
with the NIH Guide for the Care and Use of Laboratory Animals

and were approved by the UCLA animal studies committee. For

gene expression experiments, the brains of 12 six-month-old

tauP301L and 12 nontransgenic males were dissected, separating

the spinal cord, cortex, brainstem, and cerebellum (Figure 1A). Total

RNA was extracted using acid phenol extraction (Trizol LS; GIBCO/

BRL). The concentration and quality of RNA were determined using

the Nanodrop spectrophotometer and confirmed on the Agilent

bioanalyzer.

Microarray Data Analysis

All studies used the Agilent Developmental oligonucleotide microar-

ray containing over 20,273 unique probes, representing 10,039

(49.5%) genes with a known full-length cDNA sequence (including

1584 RIKEN genes) and an additional 6289 (31.0%) ESTs. cDNA syn-

thesis, cRNA labeling, hybridization, and scanning were performed

according to the manufacturer’s protocol (Agilent). To minimize

sample variability caused by individual differences between animals

and dissections, RNA from at least three male littermates of the

same genotype was pooled for preparation of each region-specific

pool (Figure 1). Experimental tauP301L pools were compared to litter-

mate nontransgenic control pools. The comparisons were per-

formed in three different litters, therefore producing three indepen-

dent biological replicates. In total, we obtained 24 expression

profiles for cortex, spinal cord, brainstem, and cerebellum of

tauP301L and control animals.

The raw microarray data were analyzed in the R statistical pack-

age (http://lib.stat.cmu.edu/R/CRAN/index.html). The local back-

ground values were subtracted from the raw signal intensity values

and transformed as log2, which allows a natural interpretation of dif-

ferential expression as fold changes and makes the intensity distri-

bution more symmetric and the error variances more homogeneous.

The log2 intensities below the mean + 2.64 standard deviations of

negative control intensities in each array were excluded from further

analysis. The contrast-based cyclic lowess normalization method

was used in the groups corresponding to a specific brain region

(Bolstad et al., 2003). Normalizations were carried out in all distinct

pairwise comparisons. Two different methods were used to identify

differentially expressed genes. First, the local-pooled-error (LPE)

method was used. The LPE method is known to be appropriate for

a small number of replicated microarrays (Jain et al., 2003). The

LPE was derived by evaluating the baseline error distribution in

each brain region. Then, the median for each gene under the two

comparison conditions was calculated. The LPE statistics for the

median difference were calculated as

z =
Med1 2 Med2

sPooled

;

where Medi, i = 1,2 is the median intensity of the mutant and wild-

type, respectively;

s2
Pooled =

p

2

�
s2

1ðMed1Þ=n1 + s2
2ðMed2Þ=n2

�
;

where n1 and n2 are the number of replicates in the two conditions;

and

s2
i ðMediÞ; i = 1; 2

is the estimate of the variance from each LPE baseline-error distribu-

tion at each Medi. The LPE statistic Z follows an approximately

normal distribution under the null hypothesis that the gene is not sig-

nificantly different between two compared conditions. Thus, the raw

p values were obtained for each gene (see Supplemental Data). The

Benjamini and Hochberg false discovery rate was evaluated using

a p value of 0.05 to adjust for multiple comparisons. In the second

method, normalized expression levels were used to generate ratios

of experimental/control signals. The genes with R0.5 or %20.5

ratios (1.4-fold change) through all replicates were selected as reg-

ulated (Table 1). This criterion was based on the 99.5% confidence

interval derived from homotypic hybridizations (data not shown; as

in Lobo et al., [2006]). Genes identified using at least one of the

methods were considered to be regulated. For details regarding ad-

ditional experimental design and methods, see MIAME report and

http://geschwindlab.medsch.ucla.edu.

http://lib.stat.cmu.edu/R/CRAN/index.html
http://geschwindlab.medsch.ucla.edu
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Northern Blot Analysis

For Northern blotting, total RNA was extracted from the cortex, cer-

ebellum, brainstem, and spinal cord from at least three transgenic

and three control male mice, all nonlittermates. Blots were prepared

using 10 mg of total RNA and transferred to a Nytran SPC membrane

(Schleicher & Schuell). Probe labeling, hybridization, and washes

were done using the Strip-EZ protocol (Ambion). The Phosphor Im-

ager system (Molecular Dynamics) was used to visualize and quan-

tify the probe signals. For normalization controls, a b-actin probe

was used.

In Situ Hybridization

In situ hybridizations were performed using six-month-old tauP301L

and control animals as described previously (Geschwind et al.,

2001). Slides contained at least three sagittal sections through entire

brains of either control or tauP301L mice.

Drosophila Genetics and Phenotypic Analysis

A transposon insertion in the 50 UTR of dPSA (l(3)06226) was identi-

fied initially as a tau enhancer in a pilot screen of lethal P element in-

sertions on the third chromosome obtained from the Bloomington

Stock Center (Bloomington Stock number 10158; http://flybase.

org/.bin/fbidq.html?FBst0010158). (For listing of stocks see http://

flystocks.bio.indiana.edu/Browse/insertions/GDP_all/pz-3.htm). In-

dividual males for each P lethal line (maintained over balancer chro-

mosomes) were crossed to females of the genotype y1w1118; gl-

TauWT-1.1 (Jackson et al., 2002); control crosses used y1w1118

males. Eye phenotypes of progeny were scored under the dissecting

microscope, and positive ‘‘hits’’ were evaluated further using scan-

ning electron microscopy (SEM). Enhancers tend to decrease eye

size and produce eyes with a more uniform rough appearance,

(i.e., leading to fusion and loss of ommatidia), whereas suppressors

increase size and tend to have the rough area confined to the most

anterior portions of the eye. Findings using (l(3)06226) were subse-

quently confirmed using a characterized allele of PSA, PX49 (Schulz

et al., 2001). Ubiquitous low-level overexpression of dPSA was ac-

complished using a heat shock (hs)-dPSA line and raising progeny

at 25�C. To engineer the gl-dPSA line, dPSA was subcloned into

pExpress-gl. Identity of the construct was confirmed by sequencing.

Transgenic lines were obtained using standard techniques (Rubin

and Spradling, 1982; Spradling and Rubin, 1982). As some gl-

dPSA lines had abnormal phenotypes, we selected for lines with

weak expression of dPSA in order to demonstrate clear genetic sup-

pression. The DVAP33A mutant, which was produced using impre-

cise excision, was obtained from Hugo Bellen (Pennetta et al.,

2002), and the piggyBac insertion (Thibault et al., 2004) in Eef1a1

was obtained from the Bloomington Stock Center. The UAS-htt-

Q1201-78 construct was derived from GMR-htt-Q1201-171 (Jackson

et al., 1998).

Analysis of eye phenotypes using scanning electron microscopy

was performed as described previously (Sang et al., 2005). Analysis

of adult retinal phenotypes using whole-mount preparations in con-

junction with laser scanning confocal microscopy was performed as

described previously (Jackson et al., 2002; Sang et al., 2005). Sam-

ples were stained with TRITC-phalloidin (Sigma) and either anti-

lamin D0 (Smith and Fisher, 1989) (1:200) or T14 (Kosik et al., 1988)

(1 mg/ml; Zymed), in conjunction with FITC-anti-mouse IgG. Immu-

nohistochemical analysis of the larval eye disc was carried out using

established procedures (Jackson et al., 2002; Sang et al., 2005).

Samples were stained with T14 + TRITC-anti-mouse, anti-dPSA an-

tiserum (1:100) + FITC-anti-rabbit, or anti-Elav (Robinow and White,

1988) (1:100) + Cy5-anti-rat IgG. The dPSA antiserum was raised

against a peptide (CQRDREQLAIFFRDDQ) and generated commer-

cially (Open Biosystems); it was found to react specifically with

dPSA in immunohistochemistry and Western blots (data not shown).

Secondary antibodies were from Jackson Immunoresearch.

Western Blotting

Crude protein extracts from postmortem frontal cortex and cerebel-

lum of six FTD and six control brains were used (Table S1). The tis-

sues were homogenized in hypotonic buffer and a protease inhibitor

cocktail (Roche). Fly heads were homogenized in 10 mM Tris-HCl

(pH 7.4) + 0.8 M NaCl + 1 mM EGTA (pH 8.0) + 10% sucrose and a pro-

tease inhibitor cocktail (Roche). Protein concentrations were deter-
mined by the Bradford assay (Bio-Rad) and samples containing ap-

proximately equal protein concentrations were loaded. Proteins

were separated by SDS-PAGE using a 4%–20% Tris-HCl gel, trans-

ferred to nitrocellulose membranes, and incubated overnight at 4�C

with goat anti-rat PSA (1:500), T14 (1:1000), AT8 (Biernat et al., 1992)

(1:1000; Pierce), Tau5 (Carmel et al., 1996) (1:10,000), and/or anti-b-

tubulin (1:1000, Accurate Science). Filters were treated with peroxi-

dase-conjugated anti-goat (1:5000) or anti-mouse (1:2000) IgG and

signal detected using chemiluminescence. Blots were scanned

and quantitated using NIH ImageJ (http://rsb.info.nih.gov/ij/). Data

were compiled from at least three separate experiments. Data

were plotted using Sigmaplot, and two-way ANOVA with Bonferro-

ni’s post hoc comparison was carried out using Sigmastat.

Immunohistochemistry

The UCLA Department of Pathology provided formaldehyde-fixed

and paraffin-embedded human postmortem brain tissue under

UCLA human subject guidelines. Primary antibodies used in the

study include goat anti-rat PSA serum (1:10) and mouse anti-neuro-

nal nuclei (NeuN) monoclonal antibody (1:100) (Chemicon). Micro-

wave boiling of deparaffinized sections in 0.015 M sodium citrate

buffer (pH 6.0) for 12 min was employed as an antigen retrieval pro-

cedure. Sections were incubated overnight first with anti-NeuN, fol-

lowed by incubation with the Vector ImmPRESS mouse reagent, and

developed using the Vector Labs VIP kit. Sections were then reacted

overnight with goat anti-rat PSA antiserum, followed by incubation

with biotinylated horse anti-goat secondary antibodies (1:500) and

development using the avidin-biotin complex kit (ABC; Vector

Labs) and Vector DAB reagent. The slides were counterstained

with Vector Methyl Green.

PSA Preparation and Enzymatic Activity

The cDNA corresponding to human PSA (hPSA) was generated by

PCR from the Large Insert Human Brain cDNA library (Clontech)

and ligated into the pET-41 Ek/LIC vector (Novagen) having an N-ter-

minal glutathione S-transferase (GST) fusion tag. The pET-41-GST-

hPSA construct was then transformed into E. coli BL-21-DE3* cells

(Novagen). To reduce the extent of inclusion body formation, cells

were grown at 18�C for 16 to 17 hr after induction by IPTG. Cells con-

taining soluble PSA were harvested, resuspended in phosphate

buffer (pH 7.3), and disrupted using a French press. After centrifuga-

tion, the supernatant was applied to a glutathione Sepharose col-

umn, and eluted fractions containing hPSA activity were pooled

and further purified on a Superdex-200 column. The soluble, purified

GST-PSA migrated largely as a single band on SDS-PAGE (data not

shown). Enzymatic activity was assayed at 37�C using amino acid p-

nitroanilides of Lys, Ala, Met, Leu, Val, and Pro on a Beckman DU 640

spectrophotometer employing a modified colorimetric assay (Con-

stam et al., 1995).

Tau Preparation and Digestion with PSA

Expression and purification of full-length recombinant human tau

protein was performed as described previously (Goedert et al.,

1989). For time course analysis, digestion of 6XHis-Tau was carried

out at 37�C in 10 mM Tris-HCl buffer (pH 7.4), containing 1 mM DTT at

a molar ratio of 1:14.2 (PSA:tau). Aliquots were taken at 0, 4, 8, 12, 14,

16, 18, and 20 hr, and the reaction was terminated by the addition of

Laemmli SDS sample buffer and boiling for 5 min. Samples were an-

alyzed by electrophoresis on a 10%–20% SDS-PAGE gradient gel.

Proteins were transferred to nitrocellulose and the membrane was

immunostained with the C-terminal-specific antibody Tau-46.1 (Car-

mel et al., 1996) (1:50,000). Horseradish peroxidase (HRP)-conju-

gated secondary antibody (Vector Laboratories) and enhanced

chemiluminescence (Amersham Biosciences) were used to visualize

the bands.

For inhibitor experiments, digestion of tau was carried out at 37�C

for 20 hr in 10 mM Tris-HCl buffer (pH 7.4) containing 1 mM DTT at

a molar ratio of 1:14.2 (PSA:tau). Proteins were electrophoresed

and transferred to nitrocellulose membranes, which were incubated

with Tau-7, which recognizes the C-terminal portion of tau. Inhibition

experiments were carried out using puromycin (Sigma), a specific in-

hibitor of PSA, or a general inhibitor of aminopeptidases, bestatin

(Sigma). The inhibitors were incubated for 5 to 10 min at room

http://flybase.org/.bin/fbidq.html%3FFBst0010158
http://flybase.org/.bin/fbidq.html%3FFBst0010158
http://flystocks.bio.indiana.edu/Browse/insertions/GDP_all/pz-3.htm
http://flystocks.bio.indiana.edu/Browse/insertions/GDP_all/pz-3.htm
http://rsb.info.nih.gov/ij/
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temperature prior to the addition of tau protein and digestion as de-

scribed above.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/51/5/549/DC1/.
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