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Region-Specific Myelin Pathology in Mice Lacking the Golli
Products of the Myelin Basic Protein Gene
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The myelin basic protein (MBP) gene encodes two families of proteins, the classic MBP constituents of myelin and the golli-MBPs, the
function of which is less well understood. In this study, targeted ablation of the golli-MBPs, but not the classic MBPs, resulted in a distinct
phenotype unlike that of knock-outs (KOs) of the classic MBPs or other myelin proteins. Although the golli KO animals did not display an
overt dysmyelinating phenotype, they did exhibit delayed and/or hypomyelination in selected areas of the brain, such as the visual cortex
and the optic nerve, as determined by Northern and Western blots and immunohistochemical analysis with myelin protein markers.
Hypomyelination in some areas, such as the visual cortex, persisted into adulthood. Ultrastructural analysis of the KOs confirmed both
the delay and hypomyelination and revealed abnormalities in myelin structure and in some oligodendrocytes. Abnormal visual-evoked
potentials indicated that the hypomyelination in the visual cortex had functional consequences in the golli KO brain. Evidence that the
abnormal myelination in these animals was a consequence of intrinsic problems with the oligodendrocyte was indicated by an impaired
ability of oligodendrocytes to form myelin sheets in culture and by the presence of abnormal Ca®" transients in purified cortical
oligodendrocytes studied in vitro. The Ca®" results reported in this study complement previous results implicating golli proteins in
modulating intracellular signaling in T-cells. Together, all these findings suggest a role for golli proteins in oligodendrocyte differentia-

tion, migration, and/or myelin elaboration in the brain.
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Introduction

The golli proteins are one of two families of products expressed
by the myelin basic protein (MBP) gene (see Fig. 1). Unlike the
classic MBPs, they do not appear to be components of the myelin
sheath but are localized primarily within the cell bodies and pri-
mary processes of oligodendrocytes (OLs) (for review, see Cam-
pagnoni and Skoff, 2001). Transcription of the golli mRNAs be-
gins at the most upstream promoter of the mbp gene, and
alternative splicing yields golli transcripts containing exons 1-3
plus varying exons further downstream, including exons that en-
code the classic MBPs. The major golli-MBPs (i.e., BG21 and J37)
are structurally related to the classic MBPs in their C-terminal
halves, because splicing of golli transcripts into the MBP-
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encoding exons occurs in frame. Thus, the two families of protein
share MBP primary sequence and, consequently, MBP antigenic
and binding determinants (see Fig. 1A) (Campagnoni et al.,
1993; Kaur et al., 2003).

The golli-MBPs are more ubiquitously expressed throughout
the nervous system and the immune system (Campagnoni et al.,
1993; Pribyl et al., 1993; Landry et al., 1998) than are the classic
MBPs, which are primarily products of myelin forming OLs.
This, and their noninclusion in the myelin sheath, suggests that
they have some other biological function than the classic MBPs.
Although the primary biological role of the classic MBPs appears
to be that of myelin structural components, the biological func-
tion of the golli proteins is only beginning to be understood
(Campagnoni and Skoff, 2001). We found that golli proteins can
modulate signaling in T-cells through negative regulation of the
PKC pathway (Feng et al., 2004). They also seem to be associated
with process extension in neurons and OLs. They have been
found to be expressed during embryonic development in neuro-
nal populations during process extension and migration (Landry
et al., 1998). Overexpression of golli induces a striking morpho-
logical effect on enhanced process and sheet elaboration in OL
cell lines (Reyes and Campagnoni, 2002).

We have generated a golli knock-out (KO) mouse in which we
have selectively ablated the golli products of the mbp gene, with-
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out ablating the expression of the classic MBPs. These golli KO
mice have a complex phenotype reflecting the loss of golli expres-
sion in the two major systems in which they are expressed (i.e.,
the immune and nervous systems) and the cell types in which
they are expressed within each system. Ablation of golli expres-
sion causes abnormalities in the immune system and its response
to experimental autoimmune encephalomyelitis (Voskuhl et al.,
2003). We have reported, in preliminary form, that the KO ani-
mals exhibit behavioral abnormalities (Olmstead et al., 2000)
reflective of neuronal abnormalities, and we report here effects of
the ablation of the golli products on OLs and myelination in
selected regions of the brain. The data in this work indicate a role
for golli proteins in myelin formation and maintenance, although
its action appears to be more evident in some regions of the brain
than others.

Materials and Methods

Generation of the golli KO mice

To create the construct for homologous recombination, 7.5 kb exon
2-containing fragment of 129SvEv genomic DNA was cloned into the
EcoRI-HindIlI sites of pSport. Exon 2 (ablated by limited Exo III exonu-
clease digestion from a Stul site within the clone) was replaced by a
neomycin (neo) poly(A) gene in the reverse orientation. As shown in
Figure 1, the final clone contained ~3.3 kb of genomic DNA upstream of
the neo insertion and 1.2 kb downstream. The herpes simplex kinase 1
gene (a gift from Drs. E. Carpenter and M. Capecchi, University of Utah,
Salt Lake City, UT) was added as a negative selection marker, and the
completed construct was transfected into the AB-1 line of mouse embry-
onic stem (ES) cells (gift from Dr. A. Bradley, Baylor College of Medicine,
Houston, TX). The resultant ES clones were injected into C57BL/6 blas-
tocysts. A chimeric founder male was bred with C57BL/6] females.
Through non-brother—sister crosses, a line was generated that is ho-
mozygous for the exon 2 ablation on a background that is ~50% 12957/
SvEvBrd and 50% C57BL6/J. A control line was established that was also
50% 129S7/SvEvBrd and 50% C57BL6/] but was negative for the exon 2
ablation. The golli KO phenotype was observed before keeping the lines
separate and then was studied over at least eight generations and re-
mained stable.

Genotyping

High-molecular-weight genomic DNA was isolated from tail snippets by
proteinase K digestion followed by phenol chloroform extraction. The
insertion site of homologous recombination was checked by screening
Southern blots with probes from the region of the genome on either side
of the original pSport 7.5 kb fragment. As shown in the blot in Figure 1C,
the 500 bp BamHI-HindIII black (blk) probe, located just upstream of
the original KO construct, reacts with a 7.0 Kb BamHI fragment in native
genomic DNA and a 2.4 kb fragment in the ablated genome. Similarly,
the blue probe (a 500 bp EcoRV-Apal fragment, located downstream of
the KO construct) reacts with an 11.5 kb native DNA band and a 9 kb
ablated one (data not shown). Animals were regularly genotyped either
by Southern blot as above or by PCR with primers located at either end of
golli exon 2: 5PM2, TGTTGGCAACTTTGGATGTGT and P3P,
TCAGCCAAGCCTTACCTTACT, which gave a 214 bp fragment in WT
mice; and at either end of the neo insertion: neo 780, GCTTGGGTG-
GAGAGGCTATTC and neo 1520, TCCCCTCAGAAGAACTCGTCA,
which yielded a 713 bp fragment characteristic of KO mice. The PCR
conditions for 1 ug of DNA in 3 um Mg?" were 4 min at 94°C, then 41
cycles for 1 min at 94°C, 45 s at 58°C and 1 min at 72°C, followed by a 7
min extension at 72°C.

Analysis of the golli KO transgenic mice

Analysis of mRNA expression. At each developmental time point, RNA
was isolated from 12-18 mouse brains using the triazol method of In-
vitrogen (Carlsbad, CA). Each time point on the subsequent Northern
analysis represents 20 ug of total RNA probed first with a 535 bp cDNA
for the coding sequence of mouse 14 kDa MBP (pP535) and then
stripped and probed with a mixture of a mouse cDNA for the coding
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sequence of proteolipid protein (PLP; BAS1013) and cyclophilin (kind
gift from Dr. G. Sutcliffe, The Scripps Research Institute, La Jolla, CA). At
each probing, the blot was analyzed on a PhosphorImager (Amersham
Biosciences, Piscataway, NJ). Loading errors were corrected by normal-
izing the values for MBP or PLP time points to those for cyclophilin
(P1B15).

Western blots. Protein was precipitated from the organic phase of the
triazol RNA extraction with isopropanol according to manufacturer’s
instructions. The blot in Figure 2 B represents 5 ug of brain protein in
each lane probed with a rabbit polyclonal antibody raised against amino
acids 1-115 of bovine MBP. The blots in Figure 1D represent 100 ug of
brain, spleen, or thymus proteins probed with an affinity-purified rabbit
polyclonal antibody raised against amino acids 1-133 of the golli proteins
(the golli-specific peptide).

Tissue preparation. In this study, 32 transgenic animals and their wild-
type (WT) littermates from postnatal day 12 (P12) (n = 4 WT, 4 KO),
P18 (n = 2,2),P28 (n =4, 3), P50 (n = 3, 4), and P90 (n = 3, 3) were
prepared and analyzed for immunohistochemical and ultrastructural
analyses. At each developmental time point, animals were anesthetized
with halothane and given intracardiac perfusions with 4% buffered para-
formaldehyde. After perfusion, tissues were removed and postfixed over-
night at 4°C. The fixed tissue was then cryoprotected in sucrose, frozen in
OCT medium, and sectioned on a cryostat (3050S; Leica, Nussloch, Ger-
many) at 20 wm. Sections were thaw-mounted onto Superfrost Plus
microscope slides (Fisher Scientific, Pittsburgh, PA) and subsequently
processed for immunohistochemistry. For ultrastructural analysis, ani-
mals were perfused with 2% glutaraldehyde/2% paraformaldehyde in a
sodium cacodylate buffer. Specific brain regions were then postfixed with
1% Os0,, dehydrated, and embedded in Epon. Ultra-thin sections were
stained with uranyl acetate and lead citrate and examined with a Jeol
(Tokyo, Japan) JEM-100CX electron microscope. Qualitative assessment
of the extent of myelination was made in comparable sections random-
ized within both golli KO and WT tissue (prechiasmatic optic nerve and
medial 1 area of the visual cortex).

Immunohistochemistry. As described by Jacobs et al. (2003), frozen
sections were pretreated with 3% H,O,, 10% methanol to quench en-
dogenous peroxidase activity. Sections were then blocked for 1 hin 0.1%
Triton X-100, 0.1% casein PBS and incubated overnight with either a
polyclonal antibody against MBP '~ peptide (1:8000) or a rat mono-
clonal antibody against PLP (AA3; 1:200; a gift from Dr. K. Ikenaka,
Okazaki National Research Institutes, Okazaki, Japan) diluted in 0.1%
Triton X-100, 0.1% casein in PBS. The localization of the antibodies was
visualized by the immunoperoxidase method (ABC kit; Vector Labora-
tories, Burlingame, CA) with 3, 3'-diaminobenzidine (Roche, Indianap-
olis, IN) as the chromagen per the manufacturer’s instructions. Images
were obtained using a Leica DM RXA microscope with a Spot CCD
camera (Diagnostic Instruments, Sterling Heights, MI) and assembled
into figures using Adobe Photoshop 6.0 software (Adobe Systems, San
Jose, CA). Using the line-intercept method, density measurements of
labeled myelin profiles (number of labeled fiber intercepts per 10 um)
were determined within the outer plexiform zone (layer 1), the middle
zone (layers 2/3), and deeper zone (layer 4 to the corpus callosum) within
the visual cortex of coronal sections from three KO and three WT P50
brains. Comparable regions of the medial 1 area of the visual cortex were
selected in all animals, and lines perpendicular to the tangent of the pial
surface were used in all measurements. Statistical significance of differ-
ences of the mean was determined using a one-tailed Student’s ¢ test.

Preparation of primary mixed glial cultures and immunocytochemistry.
The method used for preparing primary mixed glial cultures was in ac-
cordance with that described by Amur-Umarjee (1990). Briefly, mechan-
ically dissociated cerebral hemispheres from 0- to 3-d-old mice were
plated on polylysine-coated coverslips in DMEM/Ham’s F12 media con-
taining 6 g/L glucose and 10% fetal bovine serum (FBS). After growing
for 21 d in vitro, the cells were rinsed briefly in PBS and fixed in 4%
buffered paraformaldehyde for 30 min at room temperature. After rins-
ing in PBS, the cells were permeabilized with 0.1% Triton X-100 in PBS
for 10 min at room temperature and then processed for immunocyto-
chemistry following the protocol as outlined by Reyes et al. (2002). Es-
sentially, fixed cells were incubated in a blocking solution (5% goat se-
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rum in PBS) followed by an overnight incubation at 4°C with a polyclonal
antibody for MBP (1:700). Staining with anti-galactocerebroside anti-
body 01 (1:20) was performed on live cells without permeabilization for
1 h at room temperature before fixation. Coverslips for both antibodies
were then incubated with FITC-conjugated secondary antibodies (1:200;
Jackson ImmunoResearch Laboratories, West Grove, PA), mounted
onto slides with Aquamount (Lerner Laboratories, Pittsburgh, PA), and
fluorescent images were obtained using a Leica upright DMRXA micro-
scope. Cell surface measurements were made using Spot 3.5.2 software
(Diagnostic Instruments) on randomly selected, individual WT (n = 47)
and KO (n = 57) cells pooled from five different preparations (six to
eight animals per preparation for each genotype) immunostained for
either MBP or 01. Statistical significance of differences was determined
using the Mann—Whitney rank—sum test.

Calcium imaging: preparation of oligodendrocytes. Enriched oligoden-
drocytes were prepared as described by Amur-Umarjee et al. (1993).
First, cerebral hemispheres from 0- to 1-d-old mice were mechanically
dissociated and were plated on polylysine-coated flasks in DMEM/Ham’s
F12 media containing 6 g/L glucose and 10% FBS. At 14 d, oligodendro-
cytes were purified from the mixed glial culture by the differential shak-
ing and adhesion procedure by Suzumura et al. (1984) and allowed to
grow for 2 d on polylysine-coated coverslips. At this stage, they had ample
processes but were just beginning to express the OL markers 04 and 01.

Calcium imaging. Methods were similar to those described previously
(Colwell, 2000; Michel et al., 2002; Paz Soldan et al., 2003). Briefly, a
cooled CCD camera (Microview model; 1317 X 1035 pixel format;
Princeton Instruments, Monmouth Junction, NJ) was added to the
Olympus (Melville, NY) fixed-stage microscope to measure fluores-
cence. To load the dye into cells, the coverslips were washed in serum and
phenol red-free DMEM, and the cells were incubated for 45 min at 37°C,
5% CO, in the same media containing a final concentration of 4 um
fura-PE3 (AM) (Teflabs, Austin, TX) plus 0.08% Pluronic F-127 (Mo-
lecular Probes, Eugene, OR), then washed four times in DMEM and
stored in DMEM for 0—4 h before being imaged (Paz Soldan et al., 2003).
Resting calcium levels were made both in serum-free DMEM, which
contains 1.8 mm Ca?™", and in serum-free HBSS containing 2 mm Ca?*
but no Mg?*. Other measurements were made in HBSS. Calcium influx
and resting Ca 2% evels were measured on individual cells, and the results
were pooled from three to five separate coverslips representing two to
four separate oligodendrocyte preparations from 5-20 animals per prep-
aration for each condition. Statistical significance of differences was de-
termined using the Mann—Whitney rank—sum test.

The fluorescence of fura-2 was excited alternatively at wavelengths of
357 and 380 nm by means of a high-speed wavelength-switching device
(Lambda DG-4; Sutter Instruments, Novato, CA). Image analysis soft-
ware (MetaFlour; Universal Imaging Corporation, West Chester, PA)
allowed the selection of several “regions of interest” within the field from
which measurements are taken. To minimize bleaching, the intensity of
excitation light and sampling frequency was kept as low as possible. In
these experiments, measurements were normally made once every 2 s.

Calibration of Ca’" signals. Free [Ca® "] was estimated from the ratio
(R) of fluorescence at 357 and 380 nm, using the following equation:
[Ca®*] = K, X slope factor X (R — R_;,)/(R,,.. — R) (Grynkiewicz et
al.,, 1985). The K was assumed to be 135 nm, whereas values for R ,;,, and
R...x Were all determined via calibration methods. An in vitro method
was used to make estimate values. With this method, rectangular glass
capillaries were filled with a high-Ca** (fura-2 plus 10 mm Ca*"), a
low-Ca?" (fura-2 plus 10 mm EGTA), and a control solution without
fura-2. The fluorescence (F) at 380 nm excitation of the low-Ca>" solu-
tion was imaged, and the exposure of the camera adjusted to maximize
the signal. These camera settings were then fixed, and measurements
were made with 380 and 357 nm excitation of the three solutions. R ;,, =
F357nminlow Ca®"/F380inlowCa’**;R = F357inhigh Ca**/F380
in high Ca®"; Sf = F380 in low Ca®"/F380 in high Ca**.

Visual-evoked potential measurements. Vision-evoked potential (VEP)
measurements were performed in a similar manner to previous experi-
ments (Strain and Tedford, 1993, Martin et al., 2003). Mice were anes-
thetized using isoflurane and thermoregulated at a core body tempera-
ture of 37°C. In each case, the head was positioned with a stereotaxic
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positioning device housed in a covered, custom-built Faraday cage to
reduce electronic noise and leakage of light from nonstimulus sources.
The mice were allowed to reach a steady state with the anesthetic and
dark-adapted for 20 min before recording the VEPs. A flashing visual
stimulus was generated with a home-built strobe light (2 Hz) positioned
at a fixed distance (20 cm) directly in front of the mouse in a darkened
room. Subcutaneous platinum needle recording electrodes were posi-
tioned at Fpz (midline, just distal to the intraorbital line), Oz (midline,
nuchal crest), and a ground placed on the hindlimb of the mouse. ADAM
50 differential amplifier, (World Precision Instruments, New Haven,
CT) with a high-pass filter at 1 Hz and a low-pass filter at 1 kHz was used
to amplify the VEP at a gain of 10,000. The voltage measurements were
digitized and recorded with Labview (National Instruments, Austin, TX)
for 250 ms after each strobe flash for subsequent averaging across stim-
ulus trials (1000 trials per recording session). The strobe light and Lab-
view recordings were triggered by the same external source. After filtering
out spontaneous EEG shifts not associated with stimulus delivery, VEPs
averaged by case were subsequently pooled and averaged by group for age
and genotype to allow statistical comparisons of grouped data.

Results

Selective ablation of the golli-MBPs in golli KO

mice (golli =)

Exon 2 of the mbp gene was deleted to generate the golli KO mice.
This approach was used because this exon contains the transla-
tion initiation site for all golli transcripts, and its deletion would
lead to the selective ablation of only the golli family of products of
the mbp gene but not the classic MBP family (Fig. 1 A). The KO
mice were generated as detailed in Materials and Methods and
analyzed by Southern and Western blot analyses, as well as re-
verse transcription-PCR (RT-PCR), to assure deletion of the golli
products. Figure 1B illustrates the targeting construct used to
generate the mutation in ES cells. An ES cell line was obtained
with the expected genomic structure, and it was injected into
C57BL/6 blastocysts to create chimeric founders. The targeted
allele was transmitted to the offspring of the founders, which
were subsequently interbred to obtain golli /", golli*’~, and
golli~'~ mice, as detected by Southern blot analysis, an example
of which is shown in Figure 1C. This figure illustrates a HindIII
digest of genomic DNA probed with a genomic DNA segment
that lies upstream of exon 2 (designated the blk probe). In WT
mice, this probe reveals a characteristic band at 7 kb, but in DNA
containing the null allele, the band is 2.4 kb. Shown in Figure 1C
are the patterns for WT, heterozygous, and homozygous mice.
Western blot analysis (Fig. 1D) and RT-PCR (data not shown)
confirmed the loss of golli expression in the homozygous KOs
versus WT in both the brain and immune system.

Delay in classic MBP expression in the golli KO mice
Having established the selective ablation of golli in the brain, we
examined the golli KO animals for phenotypic differences asso-
ciated with cells that normally express golli proteins. We began by
examining typical markers of the myelin proteins, known to be
indicators of the structural and functional integrity of OLs. The
levels of classic MBP and PLP/DM20 mRNAs in the developing
brains of golli KO and WT mice were determined by Northern
blot analysis and quantification by phosphorimage analysis. Fig-
ure 2 A shows the results of such an analysis. There was a short
delay in the peak expression of classic MBP mRNAs in the whole
brains of the KO mice. In the case of the PLP/DM20 mRNAs,
although the developmental pattern was broader in the KO mice,
there did not appear to be a similar delay in the expression of
these mRNAs.

The delay in expression of classic MBP mRNAs was confirmed
by Western blot analysis of the whole brains of KO and WT mice
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the median membrane surface areas of KO
and WT OLs using two different OL mark-
ers. KO OLs had ~36% of the control sur-
face area when immunostained for MBP
(889.21 vs 317.08 um? p < 0.001) and
44% of the control when immunostained
with 01 (480.47 vs 211.53 um? p <
0.001). Because we routinely generate our
cultures using cerebral cortices of new-
born mice, these results are consistent
with a delay in or repression of myelina-
tion at least in the cortex of KO mice. The

Bam  Hind sut I Bam EcoRl EcoRV Bam Hind results also suggest the delay is intrinsic to

L J the KO OLs.

-
plk probe ""-.,_ ~1.5kb Ultrastructural analyses reveal delayed
Y EcoR1 Bam Delete exon 2 or impaired myelin sheaths in the

KO "‘t{iﬂd EcoiRl Insert neo gene KO mouse.
J The KO and WT nervous systems were
surveyed for evidence of delayed or abnor-
1.2kb 1.1kb 3.3kb mal myelination by electron microscopy

C.

Southern Blot

D. Western blots of golli expression

(Figs. 4, 5). Because the light microscopy
studies revealed the most notable differ-
ences between the genotypes in occipital
visual neocortex, we focused our anatom-

ical studies on the neocortical and optic

nerve components of the visual system.
This also provided a comparison for dis-
tinguishing alterations of myelination in
traditional “gray” and “white” matter
structures.

H+ H- HE - Brain

+l+ +- -

7 kb LI
(WT band) -
Thymocytes Splenocytes
(KO band) HE ol ([ -
Bam HI digest - -
Figure1.  Golli KO mouse strategy. A, Diagram of the MBP gene. B, Golli KO mice were generated by replacing exon 2 of the mbp

gene with a neo resistance gene oriented in the opposite direction, thereby ablating expression of golli-MBPs but not the classic
MBPs. €, Southern blot of genomic DNA digested with Hindlll and hybridized to the blue probe. Note the loss of the exon 2 band
(11.5—9 kb) in the homozygous KO mice (—/—), the presence of both bands in the hemizygous KO mice (+/—), and the
presence of the exon 2 band in the WT mice. D, Western blots illustrating the loss of golli expression in the thymus, spleen, and

brain in the homozygous KO mice.

(Fig. 2B). There was significantly less classic MBP at P12 in the
golli KO versus WT, but at later ages, levels seemed comparable.
The apparent discrepancy in the peaks of mRNA versus protein
expression is probably because of the fact that the Western blots
represent an accumulation of classic MBP, in which differences
would be most evident during the early, logarithmic phase of
developmental expression. In contrast, the mRNA analyses rep-
resent the steady-state levels of classic MBP mRNAs at any given
age and do not represent accumulation, because the mRNAs are
less stable than the proteins they encode.

Another measure of a delay in myelination can be obtained by
examining primary cultures of OLs for their ability to elaborate
myelin-like sheets, which are easily detected by immunocyto-
chemical analyses with myelin markers. Such cultures can also
reveal whether effects on myelination are intrinsic to the OL as
opposed to external, environmental, or systemic influences. Fig-
ure 3 shows examples of KO and WT OLs grown in culture for
21 d and stained for MBP. Although the KO OLs elaborated
membrane sheets (Fig. 3C,D), they were not as extensive as those
elaborated by WT OLs (Fig. 3 A, B). The observed morphological
differences also were assessed by quantitative measurements of

Electron microscopy of the visual cor-
tex revealed significantly fewer myelinated
axons in the KO than in the corresponding
regions of the WT between P12 and P49
(Fig. 4C,E, respectively). This difference
tended to increase with age as myelino-
genesis proceeded to stable adult levels in
WT but not in the KO mice. Although the
paucity of myelinated profiles was evident
throughout the cortical laminas in KO
mice, it was particularly prominent in lay-
ersI (Fig. 4 F) and VI (Fig. 4 H), normally sites of frequent myelin
profiles in WT mice. Although the defects of myelination in layer
VI could have impacted saltatory conduction along corticopetal,
corticofugal, and/or intrinsic (commissural, associational, and
local) axons of the neocortex, the defects in layer I would have
arisen mainly from defective myelination of the intrinsic axonal
connections.

The myelin profiles of KO mice were less frequent than those
found in WT mice. When encountered, the myelin profiles of KO
mice appeared to have multiple lamellas that tended to increase as
development progressed. The KO profiles contained normal, al-
beit somewhat poorly compacted, arrangements of intraperiod
and interperiod lines. Although not apparent at the magnifica-
tions in Figures 4 and 5, there was another structural difference
noted in the WT and KO specimens. The normal appearance of
myelin in the WT mice of a heavy major dense line and less dense
minor line, typical of aldehyde-fixed and osmicated electron mi-
croscopy preparations, was altered in the KO mice in which the
interperiod and intraperiod lines were of essentially equal stain-
ing intensity. The significance of this is not yet clear and requires
additional investigation.
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Figure 2.  Developmental expression of MBP and PLP/DM20 genes in the golli KO brain. 4,

Northern blot data from golli KO (—/—) and WT (+/+) mice from P6 to P45. Peak expression
of MBP mRNA levels was developmentally delayed in the KO mice relative to the WT controls.
The asterisks indicate significant differences between WT and KO at that age. Delays in the
expression of PLP/DM20 mRNAs in the KO mice were not as apparent. Error bars are shown as
SEM. B, Western blot analysis of classic MBP isoforms in golli KO and WT brains from P12 to P30.
The blots suggest a developmental delay in MBP expression in the KO mice relative to WT
controls. Note the absence of the 18.5 and 17 kDa MBP bands in the P12 KO.

Many of the cell bodies of neocortical OLs seen in the KO
mice exhibited some degree of persistent vacuolization in the
perikaryal cytoplasm (Fig. 4G). This sign may represent the
presence of a continuing pathology among the myelin-
forming cells.

In contrast to the mixed and interactive cellular composition
of neocortex, the main intrinsic cells of the optic nerve are my-
elinating OLs, which support the centripetal axons of retinal gan-
glion neurons. Thus, the optic nerve is often considered to be a
model of a “pure” CNS myelinated tract. Here, the typical myeli-
nation of both small- and large-diameter axonal fibers was
slightly delayed but essentially preserved from P12 to P49. None-
theless, the optic nerve myelin of KO mice was structurally ab-
normal in that it was persistently less compacted than in WT
mice. This defect was more notable in young mice and tended to
be corrected to some extent as development progressed. Electron
photomicrographs of myelinated axons in optic nerves from P19
golli KO and WT littermate control mice are shown in Figure 4, B
and A, respectively. At this age in the golli KO mice, the myelin
sheaths were clearly less compact than in the controls (e.g., note
the increased space between the axon and the mesaxon). At all
ages examined (up to P49), the myelin profiles tended to be thin-
ner, less elaborate, and less compacted (Fig. 5A—F). These signs of
delayed or impaired myelination were evident at P12, even before
eye opening (Fig. 5, compare A, D). At P12 in the WT animals, a
mixture of myelin profiles, representing various stages of myeli-
nation, were observed (Fig. 5G). Although this inherent develop-
mental variability was still apparent in the P12 KO mice (Fig.
5H-]), we observed abnormal membrane elaboration and im-
paired myelination at a greater frequency in the KO samples than
in the WTs. Furthermore, the impaired myelination in the KO
mice was sometimes associated with axonal degeneration
(Fig. 5I).
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golli KO

Wild Type

Figure3.  Wild-type (4, B) and golli KO (C, D) OLs grown 21 d in culture and stained for MBP.
The truncated sheets elaborated by the KO OLs compared with WT suggest impaired myelin
membrane formation. Scale bar: (in D) A-D, 30 um.

Selective, region-specific hypomyelination in the golli KO
mice results in functional abnormality

We examined the cerebral cortices of the golli KO mice by immu-
nohistochemistry for classic MBPs and myelin PLP/DM20. Al-
though overall levels of myelination, as assessed by MBP and PLP
immunostaining, were similar in the KO and WT mice, certain
specific areas were clearly hypomyelinated, in particular the vi-
sual cortex. Immunohistochemistry for MBP and PLP detected
fewer labeled cells and fibers in the KO visual cortex (Fig.
6B, D,F) than in the WT littermates (Fig. A, C,E), confirming the
reduction in myelinated profiles in this region, as shown in the
electron micrographs in Figure 4. Together, the results indicate
that this region of the cortex was hypomyelinated as early as P12,
and this continued to at least P90. At both younger (Fig. 6A, B)
and older (Fig. 6C—F) ages, immunohistochemical labeling was
sparse in the visual cortex. At P50 (Fig. 7A—-D), both the plexiform
outer zones of layer 1 near the pial surface and the underlying
cellular zones of the KO mice were significantly less labeled. Spe-
cifically, the density of labeled myelin profiles was reduced by
82% ( p < 0.05) inlayer 1, 83% in layers 2/3 ( p < 0.05), and 68%
in the deeper layers (layer 4 to the corpus callosum) (Fig. 7E).
However, within a genotype, the density of PLP and MBP fibers
was the same for any given layer (Fig. 7E). This reduction in
labeled cells and fibers may be because of impaired OL migration
into these regions during development that results in fewer my-
elinating OLs and/or to dysmyelination (Fig. 6 A, B). Whatever
the mechanism, hypomyelination in these regions persisted into
adulthood. Labeled fiber density in other sensory cortices such as
primary somatosensory and auditory cortices was reduced to a
lesser extent than observed in the visual cortex (data not shown).

Hypomyelination in the visual cortex has

functional consequences

To determine whether the hypomyelination observed in the vi-
sual cortices of the golli KO mice had any functional relevance,
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erals] are abnormal in golli KO mice and
provide a physiological correlate of the hy-
pomyelination observed in the histologi-
cal studies of this region. Interestingly, the
defects of myelin compaction evident in
the optic nerves of the golli KO mice did
not appear to impact the physiological
function of the pathways contributing to
the initiation of wave 1 of the VEP. Dimin-
ished frequency of myelinated axons aris-
ing from specific neuronal connections,
not simple defects of the compaction pro-
cess of myelinogenesis, seems to be the

source of these functional abnormalities
in golli KO mice.

Ca** homeostasis is altered in purified
oligodendrocytes isolated from golli

KO mice

Intracellular calcium is thought to be a

Figure4. A, B, Electron photomicrographs of myelinated axons in optic nerves from P19 golli KO (B) and littermate WT control
(A) mice. The myelin in the KO mouse typically was less compacted at this age. ** represents the increased space within the
mesaxon. A, axon; m, mitochondrion; v, vesicle. C~H, Electron photomicrographs of the visual cortex of P49 KO and WT mice. More
myelinated axons were presentin the WT cortex, particularly in layers | (C) and VI (E) than in the KO (F, H, respectively). An example
of an OL (*), typical of the KO mice, is shown in G. Some abnormal vacuolization was apparent in its perikaryal cytoplasm (arrows
in G’ and at higher magnificationin G’ ,and G’ ,) and possibly represents pathogenic effects in some myelinating cells. Scale bars:

(inB)A,B,1.0 wm; (inH) C-H, 1.0 m.

we conducted a VEP analysis on the KO mice versus littermate
controls. The results indicated a physiological abnormality in the
neocortex of golli KO mice. The VEP patterns were significantly
different in the golli KO homozygotes versus WT controls. Figure
8 shows the averaged results of VEP analyses of four WT and
three KO mice. Wave 1 results from signal transmission arising in
the retina, through the thalamus, to the visual cortex, and waves 2
and 3 give the latencies of signal transmissions within the visual
cortex and across hemispheres. The results indicate that cortical
(but not subcortical) sources of VEP waves 2 and 3 are delayed,
indicative of impaired salutatory conduction attributed to im-
paired myelination, in the golli KO mice (Fig. 8). These results
suggest that waves derived from cortical connections [e.g., local
(wave 2) and commissural-associational (wave 3) axonal collat-

critical regulator of growth and myelina-
tion (Soliven, 2001). To determine
whether Ca®" homeostatic mechanisms
might be altered in OLs from golli-
deficient mice, primary cultures of puri-
fied KO and WT OLs were loaded with a
membrane-permeable form of the Ca**
indicator dye fura-2. Although resting
Ca** levels did not differ between the two

genotypes (WT,70 = 1 nM, n = 396 cells;
KO, 66 = 1 nM, n = 412), the magnitudes
ofthe Ca*" response to a variety of stimuli
were significantly blunted in the KO OLs.
For example, in WT OLs, bath application
of a solution containing high potassium
(HiK 5 20 mm, 120 s) caused an average
Ca?" increase of 47 = 4% (n = 78). This
response was widespread within the OL
cultures, with 85% of cells examined
showing a Ca®" increase of 10% or
greater. The average duration of the re-
sponse (measured as the amount of time
the signal was at least 50% of its peak
value) was 217 s, with Ca** levels in most
of these cells returning to baseline levels
within 360 s. The HiK *-induced Ca**
transients were significantly reduced by
removal of extracellular Ca®" or by treat-
ment with the Ca®" channel blocker cad-
mium (0Ca*" plus HiK ", 8 = 1,7 = 49; Cd** plus HiK *,9 * 1,
n = 33). In OL cultures from the golli KO mice, the Ca?" tran-
sient induced by HiK * were significantly smaller (20 * 2;n = 77;
P <0.001). In these cultures, only 56% of cells examined showing
a Ca’" increase of 10% or greater. If we excluded the nonre-
sponding cells, there was still a significant difference between the
group means (WT, 56 = 4% vs KO, 30 = 3%).

In addition to HiK *, glutamate receptor agonists, including
AMPA, are known to induce Ca>" influxes in OLs (Itoh et al.,
2002). In OLs from WT mice, application of AMPA (25 um)
caused an average Ca’" increase of 31 * 3% (n = 70). The
calcium transients induced by AMPA in the OL from golli KO
mice were significantly smaller (19 * 2; n = 63; p < 0.01)

The magnitude of Ca** transients induced by PMA and caf-
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Electron photomicrographs of myelinated axons in optic nerves at P12, P18, and
P28. In the developmental series in A—F, myelin profiles tended to be smaller, thinner, less
elaborate, and less well compacted in KO (D—F) than in WT (A—C) mice. These signs of delayed
or impaired myelination are evident before eye-opening as shown at P12 in G—J. In contrast to
amixture of profiles representing various stages of myelination in P12 WT mice (G), several examples
of abnormal membrane generation and impaired myelination, sometimes associated with axonal
degeneration, were apparent in P12 KO mice (H-J). Scale bar: (in F,J) A-J, 1.0 um.

Figure 5.

feine were all significantly reduced in the golli KO OLs (Fig. 9A).
Importantly, these differences in the Ca** response between WT
and KO OLs were lost when the cells were in a medium with zero
Ca*™" (Fig. 9B). Taken as a whole, these data suggest that OLs
from the golli-deficient mice are less responsive to stimulation.
These blunted Ca*" responses may be responsible for the altered
patterns of OL process extension and myelination.

Discussion

It has been known for some time that the mbp gene encodes two
families of proteins that include the golli proteins and the classic
MBPs, but relatively little is known about the biological roles of
the golli proteins or even whether they have any relevance to OL
function (Campagnoni and Skoff, 2001). We generated a mouse
in which the golli products were selectively ablated to determine
whether these proteins play an important biological role in either
neurons or OLs, the major cell types in the brain in which the golli
proteins are expressed.

In this study, we show by several criteria that OLs and their
function are impaired by the selective ablation of golli proteins.
The KO animals suffer from delayed and reduced myelination in
selective regions of the brain, and this hypomyelination appears
to be long-lasting in some areas, such as the visual cortex. This
manifests itself as a physiological abnormality in parallel visual
evoked potential studies. Ultrastructural analyses demonstrate
both hypomyelination as well as abnormal myelin formation in
certain areas of the forebrain. That at least part of this hypomy-
elination is caused by intrinsic problems with the oligodendro-
cyte is indicated by the impaired formation of myelin sheets by
primary cultures of cortical OLs and the presence of abnormal
Ca’” transients in purified cortical OLs studied in vitro.
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P12 Visual Cortex

Figure 6.  A-F, Immunohistochemistry for MBP and PLP detected fewer labeled cells and
fibers in the KO visual cortex (B, D, F) than in the WT (4, C, E), confirming the reduction in
myelinated profiles in this region shown in Figure 5. At both early (4, B) and older (C~F) ages,
immunohistochemical labeling was sparse in the visual cortex. Scale bar: (in F) A, B, 370 um;
C-F, 75 pum.

Previous work in our laboratory has established that golli is
involved in signaling mechanisms within the T-cell (Feng et al,,
2004). In this system, overexpression of the golli isoform BG21
inhibits the ability of the cell to produce interleukin-2 in response
to T-cell receptor activation. Golli is not a structural component
of myelin. Thus, it seems likely that the abnormal myelin pheno-
type exhibited in the golli KO mouse is also related to some sort of
signaling function for golli in the oligodendrocyte.

The modulation of local internal Ca** levels is important in
many of the second messenger systems associated with the recep-
tors that determine the response of a cell to signals from its sur-
roundings. As with neurons and astrocytes, activation of the IP;
receptor can cause Ca>" waves from cell to cell in cultured oligo-
dendrocytes, suggesting that Ca®" may be important in cell-cell
communication (Simpson et al., 1997). Oligodendrocyte process
extension in response to PMA (Yoo et al., 1999) and oligoden-
drocyte migration in response to FGF-2 (Simpson and Arm-
strong, 1999) are dependent on Ca?" influx. In studies by Paz
Soldan et al. (2003), the ability of a monoclonal antibody to pro-
mote remyelination in a Theiler’s murine encephalomyelitis
virus-infected mouse demyelinating model correlated with the
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Figure 7. At P50, immunohistochemical labeling for MBP and PLP detected significantly
fewer labeled fibers (*p > 0.05; E) throughout the visual cortex of the KO mouse (B, D) than in
the WT (4, €). The greatest reduction of label was in the plexiform outer zones of layer 1 near the
pial surface and the underlying cellular zones of the KO mice (82% in layer | and 83% in layers
I1-III; E). This reduction in labeled cells and fibers may be caused by impaired OL migration into
these regions during development, which results in fewer myelinating OLs and/or dysmyelina-
tion. Whatever the mechanism, hypomyelination in this region persisted into adulthood. Sig-
nificant differences were not detected between the number of PLP and MBP positive fibers
within any given layer for each genotype. Error bars show SEM. Scale bar: (in D) A-D, 150 um.

ability of these antibodies to induce a Ca>* influx in isolated
oligodendrocytes, suggesting that Ca** surges may also be in-
volved in the signal for myelination. The blunted Ca*" responses
we observed in our Ca** imaging reported here suggest that the
golli depletion could also have an effect on the differentiation or
migration signaling pathways in oligodendrocytes.

Several examples of both spontaneously occurring and tar-
geted ablation of myelin proteins have been reported. Ablation of
the classic MBPs causes a severe neurological phenotype in the
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Figure8. VEPson28d golliKO and WT mice. Individual results of three KO and four WT were

averaged within each genotype. Cortical (but not subcortical) sources of VEP waves 2 and 3 are
delayed in the golli KO mice. These results suggest that waves derived from cortical connections
[e.g., local (wave 2) and commissural-associational (wave 3) axonal collaterals] are affected in
golli KO mice and provide a physiological correlate of the hypomyelination observed in the
histological studies of this region. Ret, Retina; LGN, lateral geniculate nucleus; vCTX, visual
cortex.
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Figure9. Optical imaging techniques were used to measure calcium levels in OLs from WT
and golli-deficient mice. 4, Histograms showing peak calcium transients from treatment with
PMAand caffeinein OLs isolated from WT (black bars) and golli KO (white bars) mice. Significant
differences ( p << 0.01) are indicated by the asterisks. B, Histograms showing peak calcium
transients from the same treatments as is A in the absence of extracellular calcium. All groups
were significantly reduced in the absence of calcium. Error bars are shown as SEM.

case of the shiverer (shi) mouse, which arose as a spontaneously
occurring mutant (Wolf and Billings-Gagliardi, 1984). In the shi
mouse, there is substantial hypomyelination associated with
tremors, and even seizures, resulting in the premature death of
some homozygous animals. The targeted ablation of the PLP and
myelin-associated glycoprotein (MAG) genes has resulted in KO
mice with no obvious neurological or dysmyelinating phenotype.
However, neuronal abnormalities develop in both of these mice
at later postnatal ages, and in the MAG KO, myelin degeneration
is observed (Fruttiger et al., 1995; Klugmann et al., 1997).

The golli KO mouse described here has a phenotype unlike
any of these other myelin protein KO animals. Like the PLP and
MAG KOs, there is no overt dysmyelinating neurological pheno-
type. Unlike these KOs, however, hypomyelination begins early
in postnatal development in the golli KO in selected regions of the
brain and persists into adulthood in some regions of the
forebrain.
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An unusual phenotypic characteristic of the golli KO animals
is the rather selective nature of the localization of the hypomyeli-
nation. It would appear to occur in well defined white matter
tracts, such as the optic nerve, as well as within the gray matter of
the cerebral cortex.

The lack of myelination in the visual cortex of the golli KO
mouse could be because of an effect of the ablation on axonal
elaboration or survival in this region. Without the axonal sub-
strate to myelinate, then the hypomyelination could be a second-
ary effect. We do not think this is likely, because we have no
histological or immunocytochemical evidence of such a massive
loss of fibers in this region, although we found signs of increased
neuronal cell death. Also, the in vitro studies on cultured OLs are
consistent with an intrinsic myelination defect in the corti-
cal OLs.

A more likely interpretation of these findings is that the selec-
tive hypomyelination is caused by OL heterogeneity within the
brain. There may be some subsets of OLs or their precursors in
which golli plays a more necessary role than in others. Although
myelination occurs generally from the spinomedullary junction
to the forebrain, within a single region, myelination is not syn-
chronous. The development of individual CNS regions occurs
along different schedules, with wide variations in the timing of
gliogenesis (Noble et al., 2003), and the cerebral cortex exhibits
the widest range of timing for myelination. It begins later than
many other CNS regions (Macklin and Weill, 1985; Kinney et al.,
1988; Foran and Peterson, 1992) and extends over long time
periods (Noble et al., 2003).

In addition to differences in the timing, there is evidence of
differences in the origin of the OLs. There is abundant evidence in
the rodent that OLs populating the cortex arise during early post-
natal life from OPCs generated in the cortical subventricular zone
(SVZ) (Curtis etal., 1988; LeVine and Goldman, 1988; Hardy and
Reynolds, 1991; Levison et al., 1993; Zerlin et al., 1995). Recently,
Ivanova et al. (2003) have presented evidence that OPCs gener-
ated embryonically migrate to the cortex from the medial gangli-
onic eminence, rather than the SVZ, and are involved in myeli-
nating cortical gray matter. They have proposed that cortical OLs
are generated in two developmental waves and that cortical gray
and white matter might be myelinated by different subpopula-
tions of OLs.

Other evidence supporting the notion of OL heterogeneity
include: differences in regional OL cycling times when exposed to
PDGEF in vitro and differences among OPCs in signaling mole-
cules and transcription factors (for review, see Noble et al., 2003),
regional and cellular heterogeneity in morphology (Del Rio-
Hortega, 1928; Weruaga-Prieto et al., 1996), and differences in
complements of trk receptors (Du et al., 2003) and other recep-
tors (Kettenmann et al., 1984; Takeda et al., 1995). It is possible
that some subsets of OLs are more sensitive to golli ablation and
others are more refractory because of compensation mecha-
nisms. Our Ca*”" imaging studies in isolated golli KO OLs in this
study support the notion of OL heterogeneity and are consistent
with a role for golli in differentiation, migration, and/or myeli-
nation, given the importance of Ca>* changes in this process.

In summary, we have produced a golli KO mouse in which
selective ablation of the golli products of the mbp gene has been
achieved. During early postnatal development, classic MBP ex-
pression underwent a transient delay, and in vitro experiments
with cultured OLs indicated a delay in KO OL process extension
and membrane formation. Although gross myelination appeared
normal, more careful electron microscopic and immunohisto-
chemical studies indicated that myelination in vivo was delayed
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and that the myelin was morphologically abnormal, particularly
in specific regions such as the visual cortex. These data supportan
important role for golli proteins in OL differentiation/migration
and/or myelin elaboration by the oligodendrocyte.
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