Elissa Hallem, Ph.D.

Work Titles
UCLA Associate Professor, Brain Research Institute Associate Professor, Microbiology, Immunology & Molecular Genetics Member, Immunity, Microbes & Molecular Pathogenesis GPB Home Area Member, Neuroscience GPB Home Area

Contact Information:

Work Email Address:



Hallem lab website

Office Phone Number:

(310) 825-1778

Office Address:

Los Angeles, CA 90095

Research Interest:

The neural basis of parasitic behaviors

Our research focuses on sensory circuit function in parasitic and free-living animals, and lies at the interface of neurobiology and parasitology. Nearly all organisms respond to sensory stimuli, but how sensory circuits specify behavior is poorly understood. We are investigating the neural basis of sensory behaviors in the context of human parasitism. We use parasitic nematodes and the free-living nematode C. elegans as models. The goals of our research are to understand how parasitic worms use sensory cues to locate hosts to infect, how sensory circuits of parasitic animals differ from those of free-living animals to enable parasitic behaviors, and how sensory microcircuits generate flexible outputs. Our research addresses fundamental questions of sensory circuit function and evolution. In addition, human-parasitic worms are a major cause of morbidity worldwide, and a better understanding of their behaviors may enable the development of novel strategies for preventing infections.


A selected list of publications:

Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA   A critical role for thermosensation in host seeking by skin-penetrating nematodes Curr Biol, 2018; 28: 2338–2347.
Banerjee N, Hallem E   Sexual Dimorphisms: How sex-shared neurons generate sex-specific behaviors Curr Biol, 2018; 28: R254-R256.
Gang SS, Castelletto ML, Bryant AS, Yang E, Mancuso N, Lopez JB, Pellegrini M, Hallem EA   Targeted mutagenesis in a human-parasitic nematode PLoS Pathog, 2017; 13: e1006675.
Guillermin ML, Carrillo MA, Hallem EA   A single set of interneurons drives opposite behaviors in C. elegans Curr Biol, 2017; 27: 2630-2639.
Ruiz F, Castelletto ML, Gang SS, Hallem EA   Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus PLoS Pathog, 2017; 13: e1006709.
Cevallos JA, Okubo RP, Perlman SJ, and Hallem EA   Olfactory preferences of the parasitic nematode Howardula aoronymphium and its insect host Drosophila falleni J Chem Ecol, 2017; 43: 362-373.
Park HB, Sampathkumar P, Perez CE, Lee J, Tran J, Bonanno JB, Hallem EA, Almo SC, and Crawford JM   Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis J Biol Chem, 2017; 292: 6680-6694.
Gang SS and Hallem EA   Mechanisms of host seeking by parasitic nematodes Mol Biochem Parasitol, 2016; 208: 23-32.
Rengarajan S and Hallem EA   Olfactory circuits and behaviors of nematodes Curr Opin Neurobiol, 2016; 41: 136-148.
Lee J, Dillman AR, Hallem EA   Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes BMC Biol, 2016; 14: 36.
Carrillo MA and Hallem EA   Gas sensing in nematodes Mol Neurobiol, 2015; 51: 919-931.
Pena JM, Carrillo MA, and Hallem EA   Variation in the susceptibility of Drosophila to different entomopathogenic nematodes Infect Immun, 2015; 83: 1130-8.
Castelletto ML, Gang SS, Okubo RP, Tselikova AA, Nolan TJ, Platzer EG, Lok JB, and Hallem EA   Diverse host-seeking behaviors of skin-penetrating nematodes PLoS Pathog, 2014; 10: e1004305.
Carrillo MA, Guillermin ML, Rengarajan S, Okubo RP, and Hallem EA   O2-sensing neurons control CO2 response in C. elegans J Neurosci, 2013; 33: 9675-83.
Dillman AR, Guillermin ML, Lee J, Kim B, Sternberg PW, and Hallem EA   Olfaction shapes host-parasite interactions in parasitic nematodes Proc Natl Acad Sci USA, 2012; 109: E2324-E2333.
Chaisson KE and Hallem EA   Chemosensory behaviors of parasites Trends Parasitol, 2012; 28: 427-436.
Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, and Sternberg PW   A sensory code for host seeking in parasitic nematodes Curr Biol, 2011; 21: 377-83.
Guillermin ML, Castelletto ML, and Hallem EA   Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor Genetics, 2011; 189: 1327-39.
Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Ratsch G, Miller DM, Horvitz HR, Sternberg PW, and Ringstad N   Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans Proc Natl Acad Sci USA, 2010; 108: 254-259.
Hallem EA and Sternberg PW   Acute carbon dioxide avoidance in Caenorhabditis elegans Proc Natl Acad Sci USA, 2008; 105: 8038-43.
Hallem EA, Rengarajan M, Ciche TA, Sternberg PW   Nematodes, bacteria, and flies: a tripartite model for nematode parasitism Curr Biol, 2007; 17: 898-904.
Hallem EA and Carlson JR   Coding of odors by a receptor repertoire Cell, 2006; 125: 143-60.
Hallem EA, Dahanukar A, and Carlson JR   Insect odor and taste receptors Ann Rev Entomol, 2006; 51: 113-35.
Dahanukar A, Hallem EA, and Carlson JR   Insect chemoreception Curr Opin Neurobiol, 2005; 15: 423-30.
Hallem EA, Fox AN, Zwiebel LJ, and Carlson JR   Olfaction: mosquito receptor for human-sweat odorant Nature, 2004; 427: 212-3.
Hallem EA, Ho MG, and Carlson JR   The molecular basis of odor coding in the Drosophila antenna Cell, 2004; 117: 965-79.
Hallem EA and Carlson JR   The odor coding system of Drosophila Trends Genet, 2004; 20: 453-9.
Hallem EA and Carlson JR   The spatial code for odors is changed by conditioning Neuron, 2004; 42: 359-61.
Shirke S, Faber SC, Hallem E, Makarenkova HP, Robinson ML, Overbeek PA, and Lang RA   Misexpression of IGF-I in the mouse lens expands the transitional zone and perturbs lens polarization Mech Dev, 2001; 101: 167-174.

Does this profile need updating? Contact Us