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A B S T R A C T   

Previous research has shown that humans are able to acquire statistical regularities among shape parts that form 
various spatial configurations, via exposure to these configurations without any task or feedback. The present 
study extends this approach of visual statistical learning to examine whether prior knowledge of parts, acquired 
in a separate learning context, facilitates acquisition of multi-layer hierarchical representations of objects. After 
participants had learned to encode a shape-pair as a chunk into memory, they viewed cluttered scenes containing 
multiple shape chunks. One of the larger configurations was constructed by combining the learned shape-pair 
with an unfamiliar, complementary shape-pair. Although the complementary shape-pair had never been pre
sented separately during learning, it was remembered better than other shape pairs that were parts of larger 
configurations. The greater perceived familiarity of the complementary shape-pair depended on the encoding 
strength of the previously learned shape-pair. This “parts-beget-parts” effect suggests that statistical learning, in 
combination with prior knowledge, can represent objects as a coherent whole and also as a spatial configuration 
of parts by bootstrapping multi-layer hierarchical structures.   

1. Introduction 

Visual perception has long been characterized as “unconscious 
inference” (Helmholtz, 1866/1924). Such inference allows humans to 
see objects not simply as memorized patterns of unstructured wholes, 
but rather as whole objects constructed from parts (Biederman, 1987; 
Lowe, 1985). A longstanding question is how humans use visual inputs 
to learn object representations based on parts. Grouping cues (e.g., 
curvature, boundary strength, junctions) play important roles in sup
porting part-based representations (Singh & Hoffman, 2001). Prior 
knowledge about the functional roles that parts play in objects also 
contributes to the formation of part-based representations (Tversky & 
Hemenway, 1984). 

It remains unclear, however, whether humans can learn part-based 
representations from visual experience even in the absence of such 
low-level cues or prior knowledge of functional roles. Previous research 
suggests that, based on mere exposure to the sensory environment, 
humans are able to exploit statistical regularities to acquire the building 
blocks of a hierarchy to represent objects (Fiser & Aslin, 2001; Saffran, 

Aslin, & Newport, 1996). In the context of learning the representation of 
a visual object, the relevant statistical regularities correspond to joint 
probabilities of different visual features that exhibit a spatial relation
ship. Through visual statistical learning, humans can group features that 
co-occur consistently to form representations of “visual chunks”, the 
building blocks of latent variables in a layer of hierarchical structures 
(Fiser & Aslin, 2001, 2002, 2005; Miller, 1956; Newport & Aslin, 2004; 
Turk-Browne, Junge, & Scholl, 2005). Orban, Fiser, Aslin, and Lengyel 
(2008) showed that human statistical learning of visual chunks can 
achieve close-to-optimal performance as predicted by a probabilistic 
chunking model, which uses the visual inputs and a generic prior fa
voring simple structure for a hierarchy (e.g., smaller number of latent 
variables) to infer chunks as representation units for recurring feature 
combinations. 

Probabilistic chunking provides a general computational framework 
to capture inferences about the hierarchical structure of object repre
sentations based on visual experience. The goal of probabilistic chunk
ing is to identify the hierarchy with latent variables (i.e., chunks) that 
best explain all visual inputs from learning experience. As the 
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computation is built on Bayesian inference, priors on possible hierar
chical structures play an important role in model predictions. The 
inductive biases incorporated into priors are vital for the inference 
process because many different forms of hierarchical structures may be 
consistent with the observed inputs. 

As illustrated in Fig. 1 (an example adapted from Biederman, 1987), 
we perceive a watering can as a coherent perceptual object, but also as a 
spatial configuration of smaller elements including the handle, vessel, 
spout, and nozzle. Fig. 1 depicts a simplified example of the visual inputs 
in a learning situation, where we sometimes observe the whole object (e. 
g., the watering can), but sometimes only observe a partial view of the 
object (e.g., when some parts are occluded from certain viewpoints, or 
when the visible part itself could be a meaningful object, such as a 
“bucket” in the illustration). To represent the object, many hierarchical 
structures are consistent with the visual inputs. Fig. 1 (right panel) 
shows three possible structural representations, all having simple visual 
features represented as elements in the bottom layer. The first two hi
erarchical structures (H1 and H2) include different numbers of units in 
the top layer of the chunk representation. For example, structure H1 
includes a chunk of the whole object, and a chunk of the “bucket” part 
(each consisting of two elements). Structure H2 includes four chunks in 
the top layer to represent a range of part combinations in addition to the 
whole object. Structure H3 includes two layers of chunks: a mid-layer 
with two-part chunks including bucket body (i.e., handle and vessel) 
and funnel (i.e., spout and nozzle), and a top layer with a single chunk of 
the watering can including all four elements. The first two structures (H1 
and H2) increase the breadth of chunks in the top layer of a shallow 
hierarchy, whereas the third structure (H3) increases the depth of the 
hierarchy by introducing intermediate groupings of parts. These alter
native hierarchies shown in Fig. 1 are simply examples; in general, there 
exist many more possible hierarchical representations. 

Among these many possible hierarchical representations, how does 
the visual system select a structure to represent an object? Specifically, 
what are the information and learning processes involved in building a 
flexible representation of an object, so that we can see the object not 
only as a coherent perceptual whole, but also as a spatial configuration 
of parts? Fiser and Aslin (2005) showed that, after learning to see the 
“whole” object, the representations of chunks of small parts embedded 
in that object were either suppressed or non-existent (likely because they 
were unneeded to accomplish the experimental task). Similar results 
have been found in auditory statistical learning of words from syllables 
(Giroux & Rey, 2009). However, when more statistical cues are 

provided, a large chunk for a “whole” object can be broken into small 
parts. Fiser and Aslin (2005, Experiment 5) found that conditional 
probabilities between elements play an important role in determining 
what elements form a cohesive unit representing a single part, and what 
elements are separated into different parts. In order for small parts to be 
represented by separate chunks (e.g., bucket, funnel) in addition to a 
chunk representing the whole object (e.g., watering can), the condi
tional probabilities should indicate that the two parts will not always 
share the same boundary across all instances and that one part may 
appear without the other. Under these conditions, different conditional 
probabilities between the two parts may serve as a cue for part 
segmentation. 

In the present study, we examine how prior knowledge about a 
certain part acquired in other learning contexts influences part seg
mentation within an object and the formation of a multi-layer hierar
chical representation of the object. For example, before encountering a 
watering can for the first time, a child may have already seen instances 
of bucket-like objects, thereby forming a stable representation of a 
bucket. Such prior knowledge of bucket-like objects can be “recycled” to 
use for identifying a bucket part as a segmented component in a new 
object (e.g., watering can), which in turn facilitates the learning of other 
parts as representational units in order to form a multi-layer hierarchical 
structure of the watering can (e.g., Froyen, Feldman, & Singh, 2015; 
Kersten, Mammassian, & Yuille, 2004; Tu & Zhu, 2002). Such a repre
sentation allows reusable features to form a statistical distribution that 
tolerates estimation errors due to partial information (e.g., occlusion), 
yielding what is known as robust statistics (Fidler, Berginc, & Leonardis, 
2006; Yuille & Mottaghi, 2016). 

The present study sought evidence to test the role of reusable parts in 
learning both part and whole representations of a visual object within a 
multi-layer hierarchy. Grouping cues (e.g., curvature, junctions) were 
removed by using spatial configurations of novel shape elements, so that 
the formation of object representations can only rely on statistical reg
ularities of co-occurrence of shape elements. We employed a standard 
visual statistical-learning paradigm, with a critical extension of adding 
pre-exposure of a part prior to training. Specifically, we inserted a 
familiarization phase, during which participants were exposed to a part 
(e.g., EG composed of two shape elements) that would later be 
embedded within a complex structure (e.g., EFGH composed of four 
shape elements) during subsequent training. We hypothesized that such 
prior exposure to the part (EG) would facilitate the formation of a rep
resentation unit of the other embedded part (FH), even though FH has 

Fig. 1. Ambiguity in structural representations of visual objects. Many hierarchical structures are consistent with the visual inputs of an object, given that we 
sometimes observe the whole object and sometimes only observe a partial view of the object. The line drawing of the watering can is adopted from Biederman (1987). 
The letters denote shape elements that can be combined in different ways to form different structural representations of the object. 
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only co-occurred with part EG and is not a previously-known part by 
itself. We term this prediction the parts-beget-parts effect. In other words, 
via exposure to statistical regularities at different time points during 
learning, previously-learned knowledge of a part can serve as a “seed” to 
bootstrap a multi-layer, hierarchical structure with mid-level parts 
represented in the structure. 

Our study consisted of four experiments using combinations of 
initially-unfamiliar shapes. In Experiment 1, we employed a “prior-fa
miliarity” paradigm to first pre-expose participants to a pair of shapes (e. 
g., EG), and then present them with a larger quadruple configuration 
that was composed of the pre-exposed pair of shapes (EG) and a com
plementary pair of shapes (FH). We measured the subjective familiarity 
of a set of shape configurations, including the pre-exposed pair (EG), the 
complementary pair (FH), and the entire quadruple (EFGH) to assess the 
parts-beget-parts effect—inducing complementary pairs via a part-based 
representation. We then examined whether learning of the whole chunk 
and the part chunks occur together to form a multi-layer hierarchy via 
statistical learning (Experiment 2). Experiment 3 tested whether the 
parts-beget-parts effect can still survive when prior familiarity was 
induced via implicit learning rather than explicit supervision. In 
Experiment 4, we eliminated prior familiarity of a part, and instead 
varied co-occurrence frequencies of embedded parts during statistical 
learning. This manipulation allowed us to compare the effectiveness of 
two strategies that might facilitate formation of a hierarchical object 
representation: (1) reusing previously-learned parts (tested in Experi
ments 1–3), and (2) simultaneous learning based on co-occurrence fre
quencies (tested in Experiment 4). 

2. Experiment 1 

2.1. Participants 

Sixty-one undergraduate students at the University of California Los 
Angeles (UCLA) participated for course credits. All participants had 
normal or corrected-to-normal vision, and were naïve to the purpose of 
the experiment. The experiments were approved by the UCLA Institu
tional Review board. 

2.2. Stimulus and apparatus 

We adopted the 24 shape units from Turk-Browne et al. (2005) 
(Fig. 2, left). Following the design in the study by Fiser and Aslin (2005), 
the study included two types of chunks: pairs and quadruples. Pairs were 
formed by diagonally positioning two shape units. Quadruples were 
formed by putting two pairs together. Because the choice of shape units 
and the assignment of the units to chunks were randomized across 
participants for counterbalancing, in what follows, we use letters to refer 
to individual shapes (e.g., A, B), and strings of letters to refer to chunks 
(e.g., quadruple ABCD, pair KL).The inventory of the shape elements is 

shown in Fig. 2. 
These stimuli were fitted into a 5 × 5 grid to form a scene. The grid 

and the shapes were black (0 cd/m2) on white background (146.5 cd/ 
m2). The whole grid subtended a visual angle of 8.4◦. Each shape was 
about 1.2◦ × 1.2◦ in size, and was located at the center of its square cell 
within the grid. Stimuli were presented on a Viewsonic CRT monitor, 
with a 75 Hz refresh rate and a 1024 × 768 pixels resolution. The 
viewing distance was maintained at 57 cm using a chin rest. The 
experiment was run using MATLAB (MathWorks, Inc., Natick, MA) and 
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). 

2.3. Procedure 

For each participant, 16 out of the 24 shapes were randomly chosen 
for use in the experiment. These 16 shapes were then randomly assigned 
to different chunks, as shown in the middle panel of Fig. 2. Chunks of 
shape pairs in the present paper were in the oblique spatial 
configuration. 

Fig. 3 illustrates the procedure of Experiment 1. We first familiarized 
participants with a specific shape pair (Phase 1). Afterwards, partici
pants went through a standard visual statistical learning procedure 
(Fiser & Aslin, 2001, 2005) that included repeated presentations of vi
sual scenes cluttered with quadruple and pair chunks (Phase 2). For 
easier reference, in the following description we consistently use the 
example of EG as the pre-exposed embedded pair in Phase 1 and EFGH 
as the target quadruple in Phase 2. We investigated whether prior fa
miliarity of an embedded pair (EG) within a quadruple (EFGH) would 
facilitate the subsequent learning of the complementary embedded pair 
(FH) in the quadruple. 

As shown in the middle panel of Fig. 2, the chunk inventory also 
included a control quadruple (ABCD), which consisted of two embedded 
pairs (AC and BD). These two embedded pairs in the control quadruple 
had similar oblique structure as the complementary embedded pair 
(FH), were always presented together in the quadruple format, and had 
never been presented in stand-alone format during training. In the other 
words, both the complementary embedded pair FH and control 
embedded pairs AC/BD were always presented as embedded chunks 
within their respective quadruples with the same frequency, and had 
never been separated from their respective quadruples in any scenes 
during training. In Phase 2 training, the pre-exposed embedded pair EG 
were presented as an embedded pair within its parent quadruple EFGH 
and also as a stand-alone chunk presented with other chunk(s) in the 
scenes. Note that the assignment of shape units as pre-exposed 
embedded pair (EG) was randomized and counterbalanced across 
participants. 

2.3.1. Procedure in phase 1 
The goal of Phase 1 was to train participants to gain high familiarity 

of a shape pair EG, the pre-exposed embedded pair. Phase 1 consisted of 

Fig. 2. Illustration of the stimuli used (shape colors and cell shading are for illustration purpose only; all stimuli were black and white). The shading highlights the 
trained embedded pair (EG in this example). Left: The 24 shape units adopted from Turk-Browne et al. (2005). The letters A to P illustrate 16 units that were 
randomly drawn from the 24 shape units for one participant. Middle: Examples of visual chunks in the training inventory, which were either quadruples (ABCD and 
EFGH) or pairs (e.g., IJ, KL, EG). Right: Examples of training scenes formed by combining two chunks. 
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three blocks: Familiarization (30 s), Training (5 min), and Testing (1 
min). During Familiarization, participants were presented for 30 s with 
the target: the pre-exposed pair EG. They were asked to pay attention to 
this pair of shapes and were told that they would be performing some 
task related to this target afterwards. 

The subsequent Phase 1 training session consisted of 96 trials. On 
each trial, participants viewed a scene containing four shape elements 
from two pairs, which were chosen from an inventory consisting of three 
pairs: EG, MN, and OP. The two pairs within each scene were spatially 
connected as they shared at least two common edges in the grid (see 
Fig. 3, top, for some example training scenes). Depending on the specific 
orientation of the trained embedded pair EG, the maximum number of 
possible configurations to place two spatially-connected pairs within a 5 
× 5 grid was either 48 or 52. For each participant, we randomly sampled 
16 scenes each with a combination of the two pairs. This resulted in 
three types of scenes being presented during Training: EG + MN (16 
scenes), EG + OP (16 scenes), and MN + OP (16 scenes). These 48 
distinct scenes were repeated to form two blocks. Scene orders were 
block-randomized. Accordingly, each of the three pairs appeared 64 

times, or 2/3 of the total 96 trials. 
On each training trial of Phase 1, the scene was presented for two 

seconds, followed by a one-second pause. Participants performed a 
detection task by indicating whether the scene contained the pair of 
shapes that had been presented during Familiarization (EG in this 
example). After Phase 1 Training, participants were shown their detec
tion accuracy over the 96 trials, followed by a one-minute rest. 

During Phase 1 Testing, there were two types of testing scenes for 
measuring participants’ familiarity judgment. A “true” testing scene 
contained a chunk from the training inventory. A “foil” testing scene 
contained a chunk with shape combinations that had never been pre
sented during Training. As an example shown in Fig. 2, a “true” testing 
scene would be one of the three pairs in the training inventory (i.e., EG, 
MN, or OP); the “foil” scenes contained two shapes that formed a pair (e. 
g., MO, EP, or NG) that was not included in the training inventory. In 
each trial during Testing, the “true” and “foil” testing scenes were 
simultaneously presented side by side for 4 s. The true and foil chunks in 
the same test trial shared the same spatial configuration, were located at 
the same position within their respective grids, and did not shared any 

Fig. 3. Illustration of procedure for Experiment 1. To better 
illustrate the design, we highlight the chunks using colors, and 
the trained embedded pair (EG in this example) using shading. 
In all experiments here, all stimuli were black and white. Top: 
In Phase 1, participants learned the embedded target pair (EG) 
through a detection task. The result of such learning was 
measured during Phase 1 Testing. Bottom: Phase 2 was sta
tistical learning. Training scenes contained six shapes, each 
consisting of either a quadruple plus a pair or three pairs. 
Familiarity was assessed for all the trained chunks and their 
embedded pairs during Phase 2 Testing.   
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common shape. Assignment of the left or right positions was randomized 
and counterbalanced for the true and foil testing scenes. After the testing 
scenes disappeared, participants performed a discrimination task (Fiser 
& Aslin, 2001, 2005), indicating which test scene (left or right) appeared 
more familiar. There were 12 test trials in total, with each training pair 
being tested four times. 

2.3.2. Procedure in phase 2 
The goal of Phase 2 was to train participants with more complex 

visual scenes generated from an inventory that contained quadruples 
and pairs. Two quadruples (ABCD and EFGH) were included in the in
ventory. One of these two quadruples (EFGH) was the target quadruple, 
which contained the pre-exposed embedded pair (EG) that the partici
pants had been trained in a supervised manner during Phase 1. The other 
quadruple (ABCD) served as a control quadruple that was presented 
with equal occurrence frequency as the quadruple (EFGH), but none of 
the embedded pairs were presented stand-alone in the training scenes. 
As a result, excluding the pair EG, participants would view all other 
embedded pairs within these quadruples (i.e., FH, AC, and BD) with an 
equal frequency during training. If the prior familiarity of EG had no 
effect on the learning of its complementary part FH, participants would 
show the same degree of familiarity with the complementary pair FH as 
with the control embedded pairs AC/BD. 

Phase 2 (Fig. 3, bottom) consisted of a Training (10 min) and a 
Testing (2.5 min) session, with a one-minute rest in between. The 
training inventory of Phase 2 contained four types of chunks: (1) the 
target quadruple EFGH, (2) the control quadruple ABCD, (3) the pairs IJ 
and KL, and (4) the pre-exposed pair EG, termed as trained embedded pair 
in the following text. Note that the shapes M, N, O, and P from Phase 1 
were not used in Phase 2. 

The training scenes consisted of six shape elements. Each scene was 
constructed with a quadruple and a pair, or three pairs. The selected 
chunks were spatially connected within the 5 × 5 grid. The number of all 
possible ways to place a quadruple and a pair within a 5 × 5 grid in a 
spatially-connected manner is either 24 or 34 depending on the relative 
orientations between the quadruple and the pair. The number of possible 
ways to place three pairs together is 80. Four types of training scenes 
were randomly sampled from all the possible scenes: control quadruple 
+ a pair (ABCD + IJ and ABCD + KL, sampled 8 scenes each), target 
quadruple + a pair (EFGH + IJ and EFGH + KL, sampled 16 scenes 
each), control quadruple + trained embedded pair (ABCD + EG, 
sampled 16 scenes), and three-pair scenes (EG + IJ + KL, sampled 8 
scenes). This design resulted in 72 distinct training scenes, which were 
repeated to form two blocks with scene orders independently block- 
randomized. Table 1 shows the frequency of each training scene and 
the frequency for each inventory chunk to be presented out of the 144 
total training trials. Note that the two quadruples (target and control) 
were presented with equal frequencies, yielding the same presentation 
frequency for the embedded pairs (i.e., 0.44 for both FH in the target 
quadruple EFGH and AC/BD in the control quadruple ABCD). Each 
training scene was presented for two seconds, followed by a one-second 
pause. Then, a text prompt was presented. There was no task involved, 
and participants responded to the prompt by pressing the space bar, 
which then triggered the presentation of the next training scene. 

Phase 2 Testing included the familiarity-discrimination task on the 
following eight types of chunk. We tested all the four types of chunks 
that were in the inventory: (1) EFGH, (2) ABCD, (3) IJ/KL, and (4) 
trained embedded pair EG. The critical testing trials of “true” chunks 
focused on the following embedded pairs that were within the two 
quadruples, but had not been presented as separate chunks in the 
training phases: (5) the complementary pair FH embedded in the target 
quadruple, (6) a control embedded pair AC or BD in the control 
quadruple, (7) a target non-oblique pair EF or GH, and (8) a control non- 
oblique pair AB or CD. The key comparison was on the familiarity be
tween the complementary pair FH and the control embedded pair AC or 
BD, neither of which had been presented as separate chunks during 

training. The testing block included two trials for each of the eight types 
of chunks. For each participant, these 16 testing trials were presented in 
random order, and the familiarity judgment accuracy for each type of 
chunk was computed by averaging the accuracy over the two trials. 

In each test trial, one true chunk was compared with a foil chunk 
consisting of random shape combinations that had never been presented 
during Training. In addition to the constraints imposed on Phase 1 
Testing, the foil chunks were generated with the following constraints: 
(1) Shapes in the “true” and “foil” chunks were taken from different 
chunks in the training inventory; (2) The “foil” chunks had to contain 
shapes from at least two different chunks; and (3) A “foil” chunk could 
not contain any shape from the trained embedded pair (i.e., E or G in our 
example).1 

It should be noted that a new foil chunk was generated for each new 
trial. To minimize the impact of familiarization during Testing, we 
included only two test trials for each chunk type. Therefore, participants 
would see the true chunk only one time more than the second foil chunk 
during Testing. While this extra exposure during Testing could increase 
participants’ familiarity with the true chunks, the effect, if any, would be 
matched across all chunk types—critically between the complementary 
pair FH and control embedded pair AC/BD. Thus the repetition of 
chunks in Testing cannot account for the parts-beget-parts effect. 

2.4. Results and discussion 

One participant was removed from the analysis due to a very low 
detection accuracy of 0.72 in the Phase 1, which was more than four 
standard deviations below the mean. For the remaining 60 participants, 
the average detection accuracy during Phase 1 Training was high (M =
0.98, SD = 0.04). For the familiarity-discrimination task in Phase 1 
Testing, the mean accuracy for the trained embedded pair EG was M =
0.98 (SD = 0.12), with 57 out of 60 participants obtained a perfect score. 
These results indicate that the participants encoded and remembered the 
trained embedded pair successfully after Phase 1. 

Fig. 4 shows the results in Phase 2 Testing. The trained embedded 
pair (EG) maintained ceiling accuracy (M = 0.98, SD = 0.14) in famil
iarity discrimination. Participants also showed well above-chance ac
curacies for quadruples (EFGH and ABCD), together with the other two 
pairs IJ, KL in the training inventory (averages ranging from 0.70 to 
0.78; all p’s < 0.001), indicating successful acquisition of visual chunks 
in the inventory from statistical learning. 

To examine the familiarity of the embedded pairs, we considered 
three critical embedded pairs (complementary pair FH, control 
embedded pair AC or BD, and the target non-oblique pair EF or GH) in a 
repeated-measures ANOVA. Importantly, we found a parts-beget-parts 
effect, as participants identified the complementary pair (FH; M =
0.73, SD = 0.36) with significantly higher familiarity than the control 
embedded pair (AC or BD; M = 0.59, SD = 0.40; Tukey test: t(59) = 2.38, 
p = .049, Cohen’s d = 0.31), despite their equal presentation frequency 
and within-pair element predictability throughout training. Perfor
mance for non-oblique pair (EF or GH) was poor without showing sig
nificant difference from the chance performance (M = 0.57, SD = 0.40, 
p = .17). As predicted by probabilistic learning (Orban et al., 2008), we 
replicated the finding that the familiarity accuracy for the complemen
tary pair (FH) was significantly higher than non-oblique control pair (EF 
or GH) (Tukey test: t(59) = 2.80, p = .016, Cohen’s d = 0.36). These 
results suggest that the superior performance for the complementary 

1 There was an exception to constraint 3 when the true chunk was the target 
quadruple EFGH or the non-oblique target pair EF or GH. Because participants 
were very familiar with the trained embedded pair EG and the individual shape 
units E and G, they could be biased to choose the true chunk that contained 
either of the shapes (or both) over any foil chunk that did not contain them. In 
order to minimize such bias, when the true chunk contained E or G or both, the 
shape(s) would appear in exactly the same positions within the foil chunk. 
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pair FH and the trained embedded pair EG resulted from encoding the 
spatial configuration of the two pairs as two unitary components in the 
hierarchical representation. 

One potential explanation for the parts-beget-parts effect could be 
from the difference in familiarity of the respective quadruples. Namely, 
the better performance for the complementary pair FH may be from a 
“spill-over” association from the higher familiarity of the target 
quadruple (EFGH) than of the control quadruple (ABCD), because EFGH 
includes the well-trained embedded part EG. However, Experiment 1’s 
data showed that the familiarity accuracies were not different between 
the target and control quadruples (t(59) = 1.24, p = .22, Bayes Factor =
0.29, favoring the null that the two were equal). In summary, these 
results from comparisons among pairs and among quadruples are 
consistent with a multi-layer hierarchical representation that included 
the whole chunk (quadruple) at one level and the two part pairs at the 
other level (i.e., the trained-embedded pair and previously-unseen 
complementary pair) in a hierarchical structure. Table S1 in Supple
mentary Material shows the descriptive statistics for each chunk type 
tested in Phase 2 of Experiment 1. 

3. Experiment 2 

Findings from Experiment 1 provide evidence to show the part- 
beget-part effect, and familiarity of various chunks consistent with 
learning a multi-layer hierarchical representation. However, partici
pants may have chosen the target quadruple EFGH to be more familiar 

than the foil because they recognized the parts of EG and FH, rather than 
representing EFGH as a unitary, “whole” chunk composed of these two 
parts. If this were the case, participants would be equally familiar with 
the true quadruple EFGH in which part EG is on the left of FH as included 
in training trials, and with a quadruple that had the embedded pairs 
spatially swapped (FEHG) in which part EG is on the right of FH, as 
illustrated in Fig. 5. However, if participants had learned the target 
quadruple EFGH as a “whole”, they would be sensitive to its spatial 
layout of the parts and be able to distinguish between the true quadruple 
with its “swapped foil”. To address this possible explanation, we 
included a “true vs swapped” test in Experiment 2 (top panel of Fig. 5) 
for the target quadruple (i.e., EFGH vs FEHG)), in addition to measuring 
the familiarity of the complementary pair FH. 

3.1. Methods 

Eighty UCLA undergraduate students participated for course credits. 
The stimuli and procedure were identical to those in Experiment 1, 
except for Phase 2 Testing, when we tested four chunk types only: 1) the 
complementary pair (FH) versus a foil pair composed in the same way as 
in Experiment 1, 2) the control embedded pairs (AC and BD) versus a foil 
pair composed in the same way as in Experiment 1, 3) the target 
quadruple (EFGH) versus a part-swapped quadruple (FEHG), and 4) the 
control quadruple (ABCD) tested against a swapped foil (BADC). The 
inclusion of the control quadruple was to balance out the appearance 
frequency across shape elements during testing. Same as Experiment 1, 

Table 1 
Frequencies of training scenes and chunks for Phase 2 in Experiments 1–3. For each type of chunk, the non-parenthesized numbers represent the frequencies for the 
chunk to appear as a separate chunk (i.e., not embedded within any chunks). Numbers in parentheses represent the frequencies at which the chunk was displayed as a 
part embedded within a complex chunk. Specifically, for the trained embedded pair EG, the overall occurrence frequency was 48 (separate) + 64 (embedded) = 112, 
out of the 144 total trials.    

Control quadruple Target quadruple pair pair Trained embedded pair complementary pair Control embedded pair 

ABCD EFGH IJ KL EG FH AC/BD 

Training Scenes Freq.        
ABCD + IJ 16 16  16    (16) 
ABCD + KL 16 16   16   (16) 
ABCD + EG 32 32    32  (32) 
EFGH + IJ 32  32 32  (32) (32)  
EFGH + KL 32  32  32 (32) (32)  
EG + IJ + KL 16   16 16 16   
Total 144 64 64 64 64 48 (64) (64) (64) 
Rel. freq.  0.44 0.44 0.44 0.44 0.33 (0.44) (0.44) (0.44)  

Fig. 4. Results of familiarity judgments in Phase 2 Testing for different chunk types in Experiment 1. Labels on the horizontal axis are based on the example in which 
EG is the trained embedded pair (see text). Error bars indicate ±1 S.E.M. 
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participants completed two trials of familiarity-judgment task for each 
type of chunks, and the familiarity-judgment accuracy was computed by 
averaging the accuracy over these two trials. Among the 80 participants, 
20 participants were tested on the two pair chunks (four trials in total, 
with order randomized). The other 60 participants were tested on all 
four chunk types (eight trials in total, with order randomized). 

3.2. Results and discussion 

The analysis excluded the data of four participants. Two of them had 
exceptionally poor detection accuracy in Phase 1 Training (0.41 and 
0.47), which was more than four SD’s below the mean. The other two 
indicated at the end of Experiment 2 that they had participated in a 
similar experiment of visual statistic learning at UCLA. The remaining 
76 participants (19 tested with two chunk types, 57 tested with four 
chunk types) yielded close to perfect performance in the detection task 
during Phase 1 Training (M = 0.995, SD = 0.0110) and in familiarity 
discrimination during Phase 1 Testing (trained embedded pair: M =

0.987, SD = 0.056). 
Fig. 5 shows the results of Phase 2 Testing for the complementary 

pair, the control embedded pair, and the target quadruple (tested against 
swapped-foil) in Experiment 2. As in Experiment 1, the familiarity ac
curacy for the complementary pair (M = 0.77, SD = 0.30) was signifi
cantly different from chance (t(75) = 7.86, p = 2e-11, Cohen’s d = 0.90). 
Unlike in Experiment 1, the accuracy for the control embedded pair (M 
= 0.63, SD = 0.39) was also significantly above chance (t(75) = 2.78, p 
= .007, Cohen’s d = 0.30), indicating that participants may have learned 
the embedded pair in the control quadruple. This result could be due to 
learning during the test of the control quadruple displayed with its 
swapped foil, which gave away the embedded structure of the control 
quadruple. Most importantly, despite the above-chance familiarity of 
the control embedded pair, we found again the parts-beget-parts effect, 
as the average familiarity accuracy for the complementary pair was 
significantly higher than that for the control embedded pair (paired t- 
test: t(75) = 2.70, p = .009, Cohen’s d = 0.31). We compared the parts- 
beget-parts effects revealed in Experiments 1 and 2 in a 2 × 2 mixed- 
factorial ANOVA with one within-subjects factor of embedded pair 
type (complementary vs control pairs) and one between-subjects factor 
of experiment (Experiment 1 vs 2). The result did not reveal a significant 
interaction effect between the experiment and the difference between 
complementary pair and control pair (F(1, 134) = 0.001, p = .97, partial 
η2 = 1e-5). The main effect of chunk type was significant (F(1, 134) =
11.91, p = .0007, partial η2 = 0.082), but the main effect of experiment 
was not (F(1, 134) = 0.552, p = .46, partial η2 = 0.004). These results 
suggest that both experiments showed qualitatively similar parts-beget- 
parts effect, i.e., the familiarity accuracy was higher from complemen
tary pairs than control pairs. 

Another key finding is that the familiarity accuracy for the target 
quadruple in the “swapped test” was significantly above chance (Target: 
M = 0.74, SD = 0.34, t(56) = 5.23, p = 3e-6, Cohen’s d = 0.69). This 
result shows that participants were able to reliably discriminate between 
the target quadruple (EFGH) and its swapped foil (FEHG), suggesting 
that their familiarity on the target quadruple (EFGH) cannot be 
explained solely by combining the separate familiarity of the two 
embedded pairs (EG + FH). 

4. Experiment 3 

The first two experiments show that prior familiarity to an embedded 
part (e.g., EG) within a more complex structure (EFGH) is sufficient to 
induce the encoding of the complementary part (FH) as a representation 
unit in the subsequent testing. However, in order to introduce the prior 
familiarity of the embedded part to participants, the reference to the 
embedded part was explicit throughout the Familiarization block and the 
detection task in Phase 1 training. Although our results show that this 
procedure led to high familiarity of the complementary part, the effect 
could be due to explicit deduction from the knowledge of the pre- 
exposed chunks. It is possible that participants were biased by the 
tasks in Phase 1 and consciously deduced the existence of the comple
mentary part based on their knowledge about the trained embedded 
part. 

In Experiment 3, we aimed to test whether explicit knowledge of the 
embedded pair (EG) is necessary for the subsequent learning of the 
complementary part (FH) to show the parts-beget-parts effect. If explicit 
familiarity of an embedded part was necessary, the effect obtained in the 
previous experiments would disappear when Phase 1 learning was made 
implicit without explicitly defining the trained embedded pair through 
tasks. It should be clarified that, in the context of Experiment 3, we use 
“implicit learning” only to refer to the training process of the embedded 
pair (EG) that was “without an explicit task” as opposed to that in Ex
periments 1 and 2. 

Fig. 5. (a): Illustration of the swapped-foil test (on the target quadruple EFGH 
as an example; trained embedded pair EG highlighted with shading) in 
Experiment 2. (b): Results of Experiment 2. Familiarity-discrimination accu
racies of the complementary pair (white bar), the control embedded pair (dark 
gray bar), and the the target quadruple (light gray bar) tested against the 
swapped foil. All error bars indicate ±1 S.E.M. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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4.1. Methods 

Eighty-five UCLA students participated for course credits. The stim
uli and procedure were identical to those used in Experiment 2, except 
the following. In Phase 1 of Experiment 3, we omitted the following 
steps and tasks: the entire Familiarization, the detection task during 
Training, and Testing. To ensure Phase 1 Training was adequate, the 
number of training scenes was increased from a total of 96 to 144 (i.e., 
24 scenes sampled from each of the three types of two-pair scenes; 
repeated to form two blocks with trial order block-randomized). In 
Phase 2 Testing, we omitted the swapped-foil tests for quadruples, i.e., 
we focused on the parts-beget-parts effect by testing only the comple
mentary pair (FH) and the control pairs (AC/BD). In summary, the 
procedure of Experiment 3 was as follows: Phase 1 Training, Phase 2 
Training, and Phase 2 Testing. Importantly, during Training in both 
Phases 1 and 2, participants were only asked to passively view the 
stimuli without performing any task. They were not informed about 
anything related to the subsequent familiarity-discrimination task. 

4.2. Results and discussion 

As shown in Fig. 6, we replicated the parts-beget-parts effect that 
familiarity accuracy for the complementary pair FH was significantly 
higher than for the control embedded pair AC/BD (t(84) = 2.47, p =
.016, Cohen’s d = 0.27), even when embedded pairs in the prior expo
sure were learned implicitly without performing any tasks and tests. 
Familiarity discrimination accuracy for the complementary pair (M =
0.61, SD = 0.38) was significantly above chance (t(84) = 2.58, p = .012, 
Cohen’s d = 0.28), but the accuracy for the control embedded pair (M =
0.46, SD = 0.38) was not different from chance-level performance as 
expected (t(84) = 0.87, p = .39, Bayes Factor = 0.172, moderate evi
dence favoring the null). 

To evaluate the impact of explicit tasks on learning trained 
embedded pairs on the parts-beget-parts effect, data from Experiments 
1–3 were compared using a mixed-factorial ANOVA, with embedded 
pair type (complementary vs control) as the within-subjects factor and 
learning type (explicit in Experiments 1 and 2, and implicit in Experi
ment 3) as the between-subjects factor. The two-way interaction 

between embedded pair type and learning was not significant (F(1, 219) 
= 0.001, p = .97). The results revealed significant main effects for 
embedded pair type (F(1, 219) = 17.10, p < .001, partial η2 = 0.072) and 
learning type (F(1, 219) = 15.33, p < .001, partial η2 = 0.065). Specif
ically, the post-hoc Tukey tests revealed that familiarity accuracy for 
complementary pair was significantly higher than that for the control 
embedded pair for both types of learning (for explicit learning: t(219) =
3.36, p = .005; for implicit learning: t(219) = 2.62, p = .047). These 
results suggest that high prior familiarity to an embedded chunk, 
regardless of whether the familiarity has been acquired explicitly with 
specific tasks or implicitly through statistical learning, facilitated the 
learning of part-based hierarchical structure by encoding its comple
mentary part as a representation unit. 

5. Experiment 4 

In Experiments 1–3, high familiarity on the embedded pair EG was 
acquired prior to the learning of quadruples and pairs. The learning of 
the embedded pair EG was, therefore, temporally separable from the 
training of the quadruple EFGH. Would the parts-beget-parts effect still 
maintain when learning of the part and the whole occurred together? 

To address these question, Experiment 4 removed the entire Phase 1 
in previous experiments, but introduced the embedded pairs with 
different co-occurrence frequencies in a standard, one-phase statistical 
learning procedure. If simultaneous learning of the embedded pair and 
the quadruple based on co-occurrences could facilitate building of a 
part-based representation, a similar parts-beget-parts effect in Experi
ments 1–3 would be observed. However, if high familiarity to the 
embedded pair was critical to induce part-based representations, the 
lack of strong familiarity to the embedded pair would mitigate the effect 
of encoding the complementary pair as a representation unit, resulting 
in a weaker or nonexistent parts-beget-parts effect. 

5.1. Methods 

Eighty undergraduate students at UCLA participated for course 
credits. This sample size would yield a power of 0.80 for detecting an 
effect with the same effect size (Cohen’s d = 0.28) observed in Experi
ment 3 for the complementary pair (FH). To be conservative, we chose 
the effect size in Experiment 3 in this power analysis because it was the 
smallest effect size observed among Experiments 1–3 for the parts-beget- 
parts effect (Cohen’s d = 0.64 for Experiment 1; 0.90 for Experiment 2). 

This experiment used the training inventory, which included two 
base quadruples (ABCD, EFGH) and two pairs (IJ, KL). In addition, we 
included two embedded pairs (e.g., AC, EG) within the quadruples 
(ABCD and EFGH, respectively). These embedded pairs were presented 
as separate chunks in some training scenes. We refer to them as trained 
embedded pairs, and their counterparts (e.g., BD, FH) in the quadruples 
as complementary pairs. The choice of trained embedded pairs within a 
quadruple (i.e., AC or BD within ABCD; EG or FH within EFGH) was 
similarly randomized and counterbalanced across participants as in 
Experiments 1–3. 

Training scenes were constructed by putting together a quadruple 
and a pair within the 5 × 5 grid with the same spatial constraint used in 
Experiments 1–3. There were 24 or 34 total ways to place a quadruple 
and a pair within the grid, depending on their relative orientations. The 
pair could be an untrained pair (IJ or KL), or a trained embedded pair 
(AC or EG). We used all possible 164 distinct scenes with the combi
nations of one quadruple and one pair as training stimuli. Training 
frequencies of each inventory chunk were constrained by spatial 
configuration limits, but were also set to maintain the equal frequency 
between the two quadruples (ABCD and EFGH: 0.50), between the two 
untrained pairs (IJ and KL: 0.35), and between the two embedded pairs 
(e.g., AC and EG: 0.15). These training frequencies were different from 
those used in Phase 2 Training in Experiments 1–3 because we 
attempted to maintain the same inventory while only train one 

Fig. 6. Familiarity accuracies of the complementary pair (white bars) and the 
control embedded pair (gray bars) in Experiment 3. Error bars indicate ±1 S. 
E.M. 
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embedded pair in each quadruple. These constraints required balancing 
the training frequency for the trained embedded pair, which limited the 
number of possible training scenes. Table 2 shows the training frequency 
of each chunk appearing in the training scenes. 

Fig. 7 shows the procedure of Experiment 4, which consisted of 
Training and Testing. During Training, the 164 training scenes were 
presented in a randomized order across participants. All other aspects 
were the same as the procedure in Phase 2 Training in Experiments 1–3. 

To minimize the effect of learning during testing, each unique true 
chunk was tested only once per participant. This resulted in 12 testing 
trials in total, including two trials for the quadruples (ABCD and EFGH), 
two trials for the untrained pairs (IJ and KL), two trials for the trained 
embedded pairs (AC and EG), two trials for the complementary pairs (BD 
and FH), and four trials for embedded triplets extracted from the 
quadruple (ABC, BCD, EFG, and FGH). We added the tests for the 
embedded triplets in Experiment 4 so that our results could be compared 
with the following finding in Orban et al. (2008): although familiarity on 
pairs embedded within a quadruple was at chance level, familiarity on 
triplets embedded within a quadruple was significantly above-chance. If 
we could not replicate this “triplet-but-not-pair” result pattern, it would 
suggest that our training procedure may not be sufficient for inducing 
familiarity on any embedded parts. Otherwise, we could compare our 
results with theirs in the context of training embedded parts. The foils 
were generated in the same way as in Phase 2 Testing of Experiments 1. 

5.2. Results and discussion 

Fig. 8 shows the average familiarity accuracy across participants for 
each tested chunk type in Experiment 4. Table S2 in Supplementary 
Material shows the statistics for one-sample t-test against chance for the 
familiarity accuracy for each chunk type. The familiarity discrimination 
accuracy was significantly above chance for the quadruples ABCD/ 
EFGH (M = 0.73, SD = 0.31, t(79) = 6.55, p = 5e-9), the pairs IJ/KL (M 
= 0.62, SD = 0.34, t(79) = 3.13, p = .002), the trained embedded pairs 
AC/EG (M = 0.63, SD = 0.32, t(79) = 3.46, p = 9e-4), and the triplets 
ABC/BCD/EFG/FGH (M = 0.66, SD = 0.27, t(79) = 5.44, p = 6e-7). But, 
critically, despite the familiarity of the trained embedded pairs was 
significantly above chance, we did not find the parts-beget-parts effect, 
as the accuracy for their complementary pairs BD/FH was not different 
from chance (M = 0.54, SD = 0.35; t(79) = 0.97, p = .334, Bayes Factor 
= 0.194, favoring the null hypothesis that the mean = 0.50). We 
compared recognition accuracy of complementary pairs BD/FH with 
that for the trained embedded pair (AC/EG). The difference between the 
two conditions, as shown in Fig. 8, were trending but not significant (t 
(79) = 1.80, p = .075, Cohen’s d = 0.20); nor did the comparison be
tween complementary pairs (BD/FH) and pairs (IJ/KL) (t(79) = 1.53, p 
= .13, Cohen’s d = 0.17). 

Results from Experiment 4 were consistent with previous findings 
that participants were able to gain familiarity for the quadruples, as well 
as an embedded part that took up more than half of the chunk (i.e., 
embedded triplets) (Fiser & Aslin, 2005; Orban et al., 2008). However, 

without strong familiarity on the embedded pair within a quadruple, 
participants did not show the parts-beget parts effect to induce the fa
miliarity of the complementary pairs. 

It should be noted that there were other differences between 
Experiment 4 and Experiments 1–3 in addition to the number of phases 
in procedure. First, in Experiment 4, one embedded pair was taken from 
each of the two quadruples (AC from ABCD; EG from EFGH) to be pre
sented as a separate pair during training. But, in Experiments 1–3, one 
quadruple (ABCD) was designated to be a control quadruple while the 
trained embedded pair (EG) was only taken from the other, target 
quadruple (EFGH). Second, training frequencies among the chunks were 
not identical between Experiment 4 and Experiments 1–3 (for quadru
ples and the complementary pairs: 0.50 in Experiment 4 and 0.44 in 
Experiments 1–3; for trained embedded pairs: 0.65 in Experiment 4 and 
0.78 in Experiments 1–3). 

Despite such differences, the familiarity accuracies for the quadru
ples in both Experiment 1 (M = 0.75) and in Experiment 4 (M = 0.72) 
were similar and significantly above chance. These values were also 
comparable to that found in Experiment 4 in Fiser and Aslin’s (2005) 
study (mean ~ 0.72). This converging result suggests that the quadru
ples were still successfully learned in Experiment 4. However, the lack of 
the parts-beget-parts effect, i.e., the chance-level familiarity for the 
complementary pair (BD/FH), indicated that the learning setup in 
Experiment 4 did not suffice to trigger formation of a multi-layer hier
archical representation for the quadruple (ABCD/EFGH). Taken 
together, results from Experiments 1–4 suggest that the strength of fa
miliarity of a part significantly impacted the formation of a part-based, 
hierarchical representation of the whole, as demonstrated by the fa
miliarity for the complementary part. 

Table 2 
Frequencies of training scenes and chunks for Experiment 4. All within-experiment comparisons were ensured to be equal-frequencies, such that appearance frequency 
could not be confound for any effect.    

Quadruple Quadruple Pair Pair Trained embedded pair Trained embedded pair 

ABCD EFGH IJ KL AC EG 

Training Scenes Freq.       
ABCD + IJ 24 24  24  (24)  
ABCD + KL 34 34   34 (34)  
ABCD + EG 24 24    (24) 24 
EFGH + IJ 34  34 34   (34) 
EFGH + KL 24  24  24  (24) 
EFGH + AC 24  24   24 (24) 
Total 164 82 82 58 58 24 (82) 24 (82) 
Rel. freq.  0.50 0.50 0.35 0.35 0.15 (0.50) 0.15 (0.50)  

Fig. 7. Illustration of the shape units, training inventory, and procedure for 
Experiment 4. Colors and shading are for illustration purpose only (as in Figs. 2 
and 3). All stimuli were presented in black and white in the experiment. 
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To further highlight this effect of strong part familiarity on learning 
of a multi-layer hierarchical representation, we compared the effect 
sizes in terms of Hedge’s g (Hedges, 1981) across different procedures 
for learning the trained embedded part (EG) in the present study. The 
effect was defined as the difference between familiarity judgment ac
curacy for the complementary pair (FH) and the chance-level perfor
mance (0.50 for two-alternative forced-choice). Because the procedure 
for Phase 1 Training was explicit in both Experiments 1 and 2, we 
grouped the data of those two experiments. As shown in Fig. 9, the effect 
size was largest when Phase 1 Training was explicit, was reduced but 
still significantly above zero when it was implicit in Experiment 3, and 
was the weakest when the training was absent in Experiment 4. 

6. General discussion 

Using a two-phase training paradigm, we found that prior familiarity 
with a part of a complex chunk facilitates the formation of a multi-layer 
hierarchical representation of complex configurations. Specifically, after 
participants were pre-exposed to one part of a complex and novel 
configuration, subsequent learning enabled them to acquire familiarity 
of the complementary part of the complex configuration, even when the 
complementary part had not been presented separately from the whole. 

We refer to this representation-formation process from one part to its 
complementary part as the parts-beget-parts effect. 

Our study is not the first to demonstrate that parts embedded within 
a whole can be encoded and remembered via visual statistical learning. 
Fiser and Aslin (2005, Experiment 5) showed that a large structure can 
be broken into parts according to conditional probabilities of these parts 
during learning, while the joint probabilities among the elements were 
controlled. For example, the conditional probability of a part appearing 
next to another part was either P(Y | X) = 1 or P(Z | X) = 2/3 during 
training. Part X, thus, had higher predictability (defined as conditional 
probability) on Y than on Z in terms of their occurrence during training. 
In the subsequent testing, participants judged the part pair with higher 
conditional probability (i.e., XY) to be more familiar than the pair with 
lower conditional probability (i.e., XZ). This result indicated that pre
dictability among parts can serve as a cue to divide a large structure of 
“whole” into smaller “parts”. 

The parts-beget-parts effect reported in the present study can be 
viewed as an extension of encoding smaller parts via visual statistical 
learning over time and across learning contexts. Specifically, prior 
knowledge of certain parts acquired in an early learning phase provides 
a “seed” or a starting point, enabling the subsequent learning of multi- 
layer hierarchical structures. What are the essential components in 
acquiring both the whole and the part representations in a multi-layer 
structure? We will address this question in the next two subsections 
from perspectives of computational modeling and learning processes 
involved in the paradigm. 

6.1. Computational extension of probabilistic chunking 

Based on the computational framework of probabilistic chunking, we 
will use a simplified example to show how statistical coherence in the 
training data and prior preference favoring simple structural represen
tations determine what is learned. Suppose we view a set of scenes, 
denoted as D, in which some scenes include a quadruple with four shapes 
EFGH and some other scenes include the embedded pair EG separately 
(i.e., in the absence of the other two shapes F and H). We compare two 
relevant structural representations S1 and S2, each of which has a two- 
layer structure, with chunks in the top layer and element shapes in the 
bottom layer: structure S1 consisting of three chunks {EFGH, EG, FH}, 
and structure S2 with one quadruple and one pair {EFGH, EG}. Ac
cording to the Bayes rule, the posterior probability of a structure in light 
of the observed data can be defined as P(S | D) ∝ P(D | S) P(S). For the 
first term, the likelihood P(D | S), Orban et al. (2008) demonstrated the 
Occam’s-razor property of Bayesian models: complex structures with 
more chunks yield smaller likelihood. Intuitively, more complex 

Fig. 8. Average familiarity judgment accuracies in Experiment 4. Error bars indicate ±1 S.E.M.  

Fig. 9. Effect sizes of familiarity judgment accuracies for the complementary 
pair as a function of Phase 1 Training procedures. Error bars represent 95% 
confidence intervals (computed using Hentschke and Stüttgen’s (2011) toolbox 
for measuring effect size. 
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structures can generate a larger variety of possible scenes. This fact 
naturally leads to a smaller probability of generating the specific set of 
scenes observed in an experiment. As confirmed in our simulation (see 
Supplementary Material for details of the simulation), for the experi
ment paradigm used in the current study, although both structures can 
account for the observed set of scenes, S1 structure with three chunks 
{EFGH, EG, FH} yields a smaller likelihood than does the simpler 
structure S2 with two chunks {EFGH, EG}, see Fig. 10 left panel. The 
second term, the prior P(S), further penalizes complex structures by 
assigning smaller prior probabilities to them. For example, Orban et al. 
(2008) adopted geometric distributions as the prior to incorporate a 
preference favoring chunk inventories with fewer and smaller chunks. 
As shown in Fig. 10 left panel, S1 structure with three chunks imparts a 
smaller prior probability than does the simpler structure S2 with two 
chunks. Accordingly, if the structural form is constrained to a two-layer 
hierarchy with chunks in the top layer, S1 structure that includes both the 
quadruple (EFGH) and the complementary part (FH) as chunks is un
likely to yield the highest posterior probability (i.e., the product of 
likelihood and prior) in light of the observed data D. The Bayesian 
analysis reflects a rational strategy to maintain the efficiency of visual 
representations for objects or multi-object scenes without adding 
numerous extra chunks that are redundant given the observed data. 

However, when the structural representation can be extended in 
depth to include additional layers, other preferences can be included in 
the structural priors to express inductive biases about what kinds of 
multi-layer hierarchical structures are likely to occur in the world, and 
what constraints to incorporate in a prior distribution over structures. 

Here we suggest to use a nonparametric distribution over tree 
structures, known as the nested Chinese restaurant process (nCRP) (Blei, 
Griffiths, & Jordan, 2010) to derive the prior distribution for a multi- 
layer hierarchy. The nCRP prior is flexible enough to accommodate 
different structures (e.g., different layers, different number of nodes in a 
tree structure) while also probabilistically favoring simpler structures 
that provide a parsimonious account of observed data. We chose the 
nCRP prior rather than other structural priors, such as the Indian Buffet 
Process (IBP) (Griffiths & Ghahramani, 2006), or the nested-IBP (Chien 
& Chang, 2014) for several reasons. First, the IBP is not applicable to the 
present experiment as this stochastic process is unable to generate multi- 
layer hierarchical structures. Second, although the nested-IBP can be 
applied to infer multi-layer structures, this prior process is less con
strained in the sense that it allows a shape element to be included in 

multiple chunks. In contrast, the nCRP prior only allows a shape element 
to appear in one chunk at any level of the hierarchy. This “exclusive” 
constraint in nCRP limits the structural hypothesis space, which helps 
learning converge with relatively small training samples. For the current 
simulation, we define a three-layer tree structure consisted of EFGH as a 
whole chunk in the top layer, EG and FH as part chunks in the middle 
layer, and the individual shapes in the bottom layer (analogous to the H3 
structure in Fig. 1). This structure complies with the “exclusive” 
constrain of the nCRP prior. We denote this multi-layer structure as S3, 
which can account for the set of scenes D including some scenes with a 
shape pair EG, and some other scenes consisted of a quadruple EFGH. 

Now, consider a competing two-layer structure S2 consisting of one 
quadruple and one pair chunks {EFGH, EG}, in which a shape constit
uent can be used in two different chunks (i.e., E and G). As there is no 
nested tree structure involved in S2, the prior for this structure can be the 
standard Chinese restaurant process (Aldous, 1985; Pitman, 1995), a 
distribution over partitions of objects into chunks. The prior for the 
three-layer tree structure S3 can be greater than the prior for the two- 
layer structure S2, as long as the parameter in nCRP that controls a 
penalty for adding deeper layers is not too large. Fig. 10 right panel 
shows the prior probability as a function of the parameter in nCRP, 
which controls the penalty of more layers in the structure. Hence, at the 
computational level with Bayesian inference, it is possible for the pos
terior probability for the three-layer nested tree structure S3 to be higher 
than the posterior probability for the two-layer structure S2, as long as 
the prior for S3 can compensate for the differences in the likelihood 
term. At the algorithm level, using a sampling approach to exploit the 
structure space, the strong chunking for the trained embedded part (EG) 
in early learning likely provides a cue to guide the efficient sampling of 
structures. The empirical finding of better recognition for the comple
mentary pair (FH) provides evidence that the three-layer structure is the 
most supported representation based on the statistical coherence of the 
constituents and prior preference for structural representations. 

The above simulation provided evidence that the present findings are 
better explained using a multi-layer, hierarchical representation than by 
using a two-layer, feature-to-chunk representation. However, the 
simulation results do not necessarily imply that our human participants 
had built such representations of the complex chunks, or that the parts- 
beget-parts effect can only be explained by such representation. Still, our 
analysis suggests that, compared with a two-layer, chunk-to-feature 
model, a multi-layer hierarchical representation provides a better 

Fig. 10. Simulation results. (a): likelihood and prior probabilities for the two-layer structures (S1 and S2) according to the BCL model proposed by Orban et al. 
(2008). See Supplementary Material for details. (b): prior probability of two structures (S2 and S3) as a function of nCRP parameter that controlls the penalty to 
structure depth. 
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description of the underlying representation that can account for the 
present behavioral findings. 

6.2. Learning processes 

We present below possible learning processes involved in the 
learning context of the present study. We then discuss each process 
component in detail along with alternative interpretations and 
outstanding issues. First, in Phase 1 of Experiments 1–3, participants 
learned the trained embedded pair (EG) as an individual component, so 
that they formed a chunk representation of EG (component 1). Then, 
during Phase 2 when participants were exposed to training scenes con
taining the quadruple, the existence of the part representation EG may 
have enabled the formation of other part representations within EFGH 
(EFGH = EG + some other part(s); component 2). This facilitated for
mation of the representation for the complementary part (FH; compo
nent 3). Based on the part representations (EG and FH), the quadruple 
was then represented as a composition of these parts (EFGH = EG + FH; 
component 4). 

For component 1 (learning of the trained embedded pair EG as a 
chunk), our findings demonstrate that this learning component can be 
achieved either via explicitly presenting the chunk to participants in a 
supervised manner (Experiments 1 and 2) or via passive exposure to 
implicitly learn the statistical regularities (Experiment 3). Previous 
studies suggest that there are many possible ways to acquire represen
tations of parts within a complex chunk. Everyday objects often contain 
cues that allow observers to segregate meaningful parts from one 
another, such as the part boundaries arising from the minima of cur
vature (Hoffman & Richards, 1984), the ability for a part to move within 
the object (e.g., a hand rotating around the wrist), and, at a more con
ceptual level, the specific function that a part serves irrespective of its 
shape (e.g., support of a chair). It is possible that learning the trained 
embedded part via these means could also initiate the following pro
cesses that facilitate the learning of other parts. 

For component 2 (supporting the formation of complementary pair 
as an individual component in representations), our findings suggest 
that this learning of embedded pair did not happen for the control 
quadruple ABCD, because participants showed near-chance discrimi
nation in their familiarity judgments on the embedded pairs for the 
control quadruple ABCD. As mentioned above, previous studies have 
suggested other means for acquiring part representations (e.g., Fiser & 
Aslin, 2005). In the context of the present study, we discuss the facili
tation of forming part representations specifically via extracting statis
tical regularities from visual scenes. 

One question that concerns this component is the extent to which a 
complementary-part representation is favored. Although the present 
study found evidence for the learning of a complementary pair, we 
believe that this “complementarity rule” does not always apply, and 
probably depends on other factors. One such factor could be the number 
of low-level features that the complementary part contains. In the pre
sent study and previous visual statistical learning studies, visual features 
were operationalized as the shape elements. In our experiments, the 
complementary part contained only two shapes and took up half of the 
quadruple. If the quadruple contains many features and the trained 
embedded part contains only a small proportion, the remaining, com
plementary portion will be containing many features. In this situation, 
the embeddedness constraint (Fiser & Aslin, 2005) may still limit the 
complementary portion to be further grouped as a part by itself to avoid 
the curse of dimensionality. 

Another factor that could affect the induction of the complementary- 
part representation is the relative amount of training between the part 
and the whole. It is possible that, if participants are only exposed to 
significantly more instances of the training scenes containing the whole 
complex chunk (EFGH), the facilitation effect from the pre-existing part 
representation EG can be overridden, so that the complex chunk would 
be represented as an inseparable whole without embedded parts. 

However, in daily life, objects are more likely viewed repeatedly with 
partial whole due to occlusion and viewpoint, more analogous to the 
learning situations in the present study that parts and wholes are 
intermixed in the learning data. The impact of the relative amount of 
training examples between the part and the whole is also revealed in the 
results of Experiment 3 and 4. In Experiment 3, the part representation 
(EG) was learned via passive exposure and, thus, could be weaker 
relative to the whole representation (EFGH), which contributes to the 
weakened parts-beget-parts effect in Experiment 3. When Experiment 4 
significantly reduced the training examples for the part (EG), the parts- 
beget-parts effect was not revealed. 

Component 3 (the formation of representation of the complementary 
part) involves two important subprocesses. The first is the grouping of 
the remaining elements in the complementary portion (F and H) into a 
unit (FH). This grouping of elements embedded within a whole chunk 
supports the idea that the embeddedness constraint is flexible (Fiser & 
Aslin, 2005), and the present study demonstrated another condition 
under which such flexibility would allow the formation of part repre
sentation. The second subprocess is the segmentation of the comple
mentary portion (FH) from the trained embedded part (EG), so that it 
can be represented as a chunk by itself. We believe that participants 
learned the border between part EG and the complementary part FH, 
and successfully transfer the border ownership from EG to FH, enabling 
segmentation of EFGH (EFGH = E + G + F + H) that groups the lowest- 
level shape elements into two separate parts. Here, the “border” refers to 
the conceptual boundary that separates internally represented chunks. If 
there was no such border formed for FH, it would be possible that FH is 
represented as a background pattern but not an isolated chunk. It is 
important to emphasize that this border ownership by FH was never 
taught to the participants; rather, the establishment of such ownership 
by both F and H makes it possible for FH to be represented as a mean
ingful unit by itself. In their Experiment 5, Fiser and Aslin (2005) 
demonstrated that imbalanced conditional probabilities in occurrence 
among embedded elements could facilitate the “cutting” of parts. 
Findings from the present study expands on this by demonstrating that 
such facilitation on segmentation could happen based on imbalanced 
conditional probabilities between parts, which potentially operates at a 
part level instead of the element level. 

Component 4 concerns the compositional representation of the 
quadruple (EFGH = EG + FH): was there a whole representation of the 
complex chunk EFGH. In Experiment 1, the above-chance familiarity 
with the whole quadruple (EFGH) could be explained by separate fa
miliarity with the two embedded parts (EG and FH). If so, there would 
have been no need for the top-level representation of EFGH as a whole to 
present in the hierarchical structure. However, in Experiment 2, par
ticipants consistently chose the true whole EFGH as more familiar than a 
spatially swapped foil (FEHG) which used the same part constituents. 
These findings suggest that participants did not simply derive the fa
miliarity with EFGH based on their familiarity with EG and FH. Instead, 
they learned the spatial configuration by putting together these two 
parts into a whole. 

6.3. Future directions 

There are specific findings that remain to be explored in future 
studies. In this section we provide interpretations of these findings, and 
suggest potential directions for future studies to pursue. 

In Experiment 3, when the pre-exposed embedded pair was trained 
implicitly without a task, prior familiarity of this embedded pair was 
reduced. This weakened prior familiarity resulted in lower familiarity 
accuracy on the complementary embedded pair in the subsequent 
learning. In Experiment 4, when prior familiarity of an embedded part 
was eliminated by removing the pre-training familiarization, the com
plementary pair was no longer seen as more familiar than chance. This 
lack of familiarity with the complementary pair is consistent with pre
vious findings in statistical learning for visual chunks (Fiser & Aslin, 
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2005) and pseudowords from syllables (Giroux & Rey, 2009). The 
absence of the parts-beget-parts effect in Experiment 4 may have been 
due to the weak learning of trained embedded pair, or to inhibition 
between learning of the whole and of its parts at the same time. The 
present study cannot tease apart these possibilities. Future studies 
should explore the degree of part familiarity needed to trigger genera
tion of complex structure by bootstrapping based on familiar parts. 

Nonetheless, one could argue that participants also learned the 
trained embedded pair during the training phase in Experiment 4. If so, 
it would imply that when the learning of the whole and of its part 
happens within the same training session (i.e., not separate in time), the 
complementary part cannot be learned. Therefore, instead of prior fa
miliarity on a part, it might have been the time-separation between 
Phase 1 and Phase 2 that produced the parts-beget-parts effect. 

An interesting empirical question that arises from this interpretation 
is whether the same parts-beget-parts effect would be observed if the 
temporal order of Phase 1 and Phase 2 were swapped. If participants had 
only been exposed to training scenes in Phase 2 of Experiments 1–3 in 
the present study, they should only form a whole, non-compositional 
representation of the target quadruple EFGH, as in Experiment 4 in 
the present study and in previous studies, e.g., Fiser and Aslin (2005). If 
participants then went through the training in Phase 1 (i.e., learning 
EG), would the visual system retrospectively turn the non-compositional 
representation of EFGH into a compositional one based on later-formed 
representation of EG? If so, this would suggest that the formation of a 
compositional representation is flexible and can be updated based on 
newly-acquired statistical evidence. Otherwise, it would suggest that 
timing is critical for the parts-beget-parts effect to be observed, as fa
miliarity on a part needs to be acquired before the learning of the whole 
in order for the complementary part to be learned. These possibilities 
remain to be explored in future studies. 

In a recent study, Plaut and Vande Velde (2017) demonstrated that 
human learning of wholes and parts through statistical learning can be 
modeled by learning in artificial neural networks. Their neural network 
models captured both the whole-part suppression (Fiser & Aslin, 2005; 
Giroux & Rey, 2009) and the facilitation of part representation by 
element predictability (Fiser & Aslin, 2005). In this context, our finding 
may pose a challenge to this model, because the enhanced familiarity on 
the complementary part could not be explained by element predict
ability. Future models of statistical learning need to consider prior fa
miliarity of a subpart as an important factor modulating the likelihood of 
combining other subpart(s) to form intermediate-level part 
representations. 

Furthermore, the generalizability of the parts-beget-parts effect re
mains to be explored. Specifically, despite their popularity in previous 
studies in visual statistical learning, the extent to the findings based on 
abstract shape elements can be generalized to other types of shapes (e.g., 
silhouettes, boundary outlines, or real-world objects) remains unclear. 
Although there has been evidence for visual statistical learning using 
other types of elements (e.g., Brady and Oliva (2008) used real-world 
scenes; Otsuka, Nishiyama, Nakahara, and Kawaguchi (2013) used 
everyday objects), future studies can explore the learning of parts and 
wholes using other types of elements. Also, similar to many previous 
statistical-learning studies on adults, we assessed learning using a 
familiarity-discrimination task. Although above-chance performance in 
such a task could imply the formation of a chunk representation, it is 
possible for an object part to be rated as familiar without being repre
sented as a separate chunk. To further evaluate the robustness of the 
parts-beget-parts effect, future studies could explore other testing 
methods. Examples of such methods include reaction-time tasks (e.g., 
Turk-Browne et al., 2005) for measuring the flexibility and automaticity 
of the part representation and remember/know tasks (e.g., Batterlink 
et al., 2015) for measuring the awareness of the knowledge about the 
part representation. 

7. Conclusion 

In summary, one of the most remarkable aspects of perception is the 
acquisition of representations of novel objects to achieve flexible and 
adaptive object recognition (Tanaka & Farah, 1993; Ullman, 2007; 
Yuille, 2011). The present study provides evidence that composition
ality in object representations can be learned from mere exposure via 
statistical learning, which promotes reuse of prior knowledge of parts 
that occurred in a different learning context. Critically, prior familiarity 
with one part of a complex object facilitated the formation of a hierar
chical representation of that complex object based on an additional, 
novel part. These findings demonstrate the power of statistical learning 
to bootstrap the acquisition of novel parts in order to form compositional 
representations of objects. Future studies should explore other learning 
mechanisms fostering compositional object representations, as well as 
the interactions between different learning mechanisms. 
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