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Abstract

The present note explores sources of misplaced criticisms of P-values, such as conflicting definitions of “sig-
nificance levels” and “P-values” in authoritative sources, and the consequent misinterpretation of P-values
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as error probabilities. It then discusses several properties of P-values that have been presented as fatal flaws:

That P-values exhibit extreme variation across samples (and thus are “unreliable”), confound effect size with
sample size, are sensitive to sample size, and depend on investigator sampling intentions. These properties
are often criticized from a likelihood or Bayesian framework, yet they are exactly the properties P-values
should exhibit when they are constructed and interpreted correctly within their originating framework.
Other common criticisms are that P-values force users to focus on irrelevant hypotheses and overstate
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evidence against those hypotheses. These problems are not however properties of P-values but are faults
of researchers who focus on null hypotheses and overstate evidence based on misperceptions that p = 0.05
represents enough evidence to reject hypotheses. Those problems are easily seen without use of Bayesian
concepts by translating the observed P-value p into the Shannon information (S-value or surprisal) —log (p).

1. Introduction

There are many reasons to be critical of traditional testing
(which tethered P-values to decision rules); nonetheless, they
provide no basis for blaming P-values for behaving as they
were designed to do, or for their misuse and misinterpretation
(Benjamini 2016). As has been argued before (e.g., Senn 2001,
2002), the problems are instead a failure of textbooks and tuto-
rials to describe correctly the inferential meaning of P-values,
and a failure to describe test hypotheses appropriate for practical
needs. There is also an egregious tendency to blame users for
these problems, even though the statistics literature up to the
highest levels displays descriptions and definitions founded on
jargon that is inconsistent across sources and which violate
ordinary language meanings. These problems require far more
expertise to sort out than ordinary users could be reasonably
expected to have, and set the stage for confusions and misinter-
pretations such as those discussed by Gigerenzer (2004), Hoek-
stra et al. (2006), Hurlbert and Lombardi (2009), Greenland
etal. (2016), Amrhein et al. (2017), McShane et al. (2017, 2018),
Wasserstein and Lazar (2016), and many other sources.

The present note describes how authoritative definitions of
“significance levels” and “P-values” vary, leading to misinter-
pretations of P-values as error probabilities. It then discusses
several criticisms of P-values that are instead problems of poor
teaching and terminology, and several properties of P-values
that are often presented as fatal flaws but reflect instead how
valid P-values should behave. The underlying view is that, while
P-values are certainly limited in scope and difficult to under-
stand properly, many strident criticisms judge these statistics

according to inappropriate criteria or in comparison to methods
that are subject to parallel criticisms. Especially pernicious are
criticisms that overlook how demands for conclusive inferences
can undermine any method, including confidence intervals and
Bayesian statistics.

Concepts will be illustrated with a cohort study which
compared adverse event rates among infants receiving ibuprofen
(Advil™, Motrin™), alone or in addition to other drugs, to
rates among those receiving only acetaminophen (paracetamol,
Tylenol™) (Walsh et al. 2018). A highlighted result for renal
(kidney) adverse events was an adjusted estimated rate ratio
(RR) of 1.84 with 95% confidence limits of 0.66, 5.19, which
correspond to an event-rate increase of 84% for ibuprofen
compared to acetaminophen alone, an interval ranging from
a 34% decrease to a 419% increase, and a P-value of 0.25 for
testing the null hypothesis of no association (rate ratio of 1, a
0% difference). Theoretical descriptions will focus on testing of
a hypothesis H about a coefficient 8 embedded in a regression
model A (which encodes the set of background assumptions
used for the test), such as H: 8 = b where b is a fixed, hypothe-
sized value for 8; in multiplicative rate models 8 =In(RR). The
tested value b is usually but need not be zero. The discussion
will also consider the more general case of tests of fit of the
embedding model A.! For simplicity, however, I will assume
the dataset is large enough so that all the usual continuous

! This case is more general in that a test of 8 =b given A can be treated as
a test of the fit of the model in which 8 = b holds relative to the model in
which B is unconstrained but the embedding model A holds.
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large-sample approximations hold. The most technical asides
will be in footnotes. As will be described, some of the problems
in understanding P-values as evidence measures can be reduced
by converting the observed P-value p to an information measure
such as the S-value s = log, (1/p) = —log, (p).

2. The Confusing and Unacknowledged Variation
in Basic Definitions and Descriptions

Some problems can be traced to variation in definitions and
terminology across authoritative sources with no mention of
the variation by those sources. At least two definitions of “the
observed P-value” are in wide use. In the usual inferential
(Fisherian) definition, a P-value is the tail probability p under
H that a test statistic (such as an absolute Z-score or x2)
would be as large or larger than what was observed, given
the embedding model A (Cox and Donnelly 2011, sec. 8.4).
Fisher (1925) called p the “significance level” or “value of P;” and
“significance level” is common in British sources thereafter (e.g.,
Cox and Hinkley 1974). In the decision-theoretical (Neyman-
Pearsonian) definition, the observed p is often defined as the
smallest « level (testing cutoff) that would allow rejection in an
a-level decision rule (Neyman-Pearson hypothesis test) which
rejects H when p <o (e.g., Lehmann 1986). While the two
definitions appear superficially distinct, they are mathematically
equivalent and thus represent logically a single definition stated
in two different ways.

Unfortunately, some authors use “significance level” to refer
to « rather than p (Lehmann 1986, p. 70). This second usage of
“significance level” contradicts the original usage and leads to
confusion of p and «, often in very subtle ways (as discussed in
the next section). In the face of such inconsistent usage among
authoritative texts, it should hardly be surprising when basic
textbooks as well as researchers confuse p and «. The observed
p is a sample feature relating the observed data to the hypothesis
H and model A used to compute p. Specifically, 100p is the
percentile location of the observed test statistic in a distribution
computed from H and A (Perezgonzalez 2015), and in this
special sense p can be considered as describing something about
the data. In contrast, « is a fixed known number (like 0.05) that
tells us nothing about the data.

Despite the common definition of “P-value” as a probabil-
ity, many decision-theoretical authors instead focus only on
repeated-sampling properties, and thus define a “P-value” not
as the observed value p, but instead as the random variable P
whose value (realization) in a given sample is the observed p
(e.g., Kuffner and Walker 2017; Murdoch et al. 2008). Thus, we
have two logically distinct definitions of “P-value” But, as with
the conflicting terminology, this conflict in definitions is rarely
noted—so it should be hardly be surprising when basic texts and
researchers confuse the random P with the observed p, which is
similar to confusing the name of a variable with an unspecified
value for it (e.g., confusing the variable X called “weight in kg”
with the unspecified value “x kg” that one might observe upon
weighing someone).

The distinction between the two definitions is important,
not the least because frequentists further define validity of the
P-value in terms of the random P: The random variable P is said
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to be valid for testing H given A (or properly calibrated, or a U-
value) if it is uniformly distributed when H and A are correct; in
that case, for every o the rule “reject H when p < o” will falsely
reject H with frequency o (Bayarriand Berger 2004).” Of course,
issues of power must enter into choice of the test statistic from
which p is computed, but those issues are outside the present
scope.

Confusion of the observed P-value p with the random vari-
able P may be a major contributor to some of the fallacies
described below and earlier (e.g., Greenland et al. 2016). Worse,
however, is that the tail-probability definition of the observed p
is often equated to or replaced by wholly incorrect descriptions
such as “p is the probability that chance alone produced the
association,” which reflects confusion beyond mere terminology
(since the probability of chance alone is none other than the
probability that H and A are correct; see item no. 2 in Greenland
et al. 2016). Setting such outright errors aside, more subtle
problems arise when the observed p is described as measuring
evidence against H, because it is inversely related to that evi-
dence: smaller values of p correspond to more evidence against
H in the data, given the model A.

In an attempt to forestall misinterpretations, p can be
described as a measure of the degree of statistical compatibility
between H and the data (given the model A) bounded by
0 = complete incompatibility (data impossible under H and A)
and 1 = no incompatibility apparent from the test (Greenland
et al. 2016). Similarly, in a test of fit of A, the resulting p can
be interpreted as a measure of the compatibility between A and
the data.® The scaling of p as a measure is poor, however, in that
the difference between (say) 0.01 and 0.10 is quite a bit larger
geometrically than the difference between 0.90 and 0.99. For
example, using a test statistic that is normal with mean zero and
standard deviation (SD) of 1 under H and A, a p 0of 0.01 vs. 0.10
corresponds to about a 1 SD difference in the statistic, whereas
a p of 0.90 vs. 0.99 corresponds to about a 0.1 SD difference.

One solution to both the directional and scaling problems
is to reverse the direction and rescale P-values by taking their
negative base-2 logs, which results in the S-value s = —log, (p).
Larger values of s do correspond to more evidence against H. As
discussed below this leads to using the S-value as a measure of
evidence against H given A (or against A when p is from a test
of fit of A).

3. A P-value is Not an Error Probability (Except
in a Useless Hypothetical Sense)

Describing or defining an observed P-value p as a minimum
a-level for rejection along with references to both p and « as
“significance levels” seem to have led to p being misinterpreted
as an error probability for actual decision problems. The latter
interpretation is just a mistake (Goodman 1999; Sellke et al.
2001; Hubbard and Bayarri 2003; see also Greenland et al. 2016,
item 9): The theory of a-level hypothesis tests requires an o

2 In parallel, P is conservatively valid if the rule “reject H when p < «” will
reject H with frequency no greater than « when H and A are correct;
conservative validity is usually the best one can do with discrete data.

3 One could also say “p measures the compatibility of A with the data”
when the subject is A, or “p measures the compatibility of the data with
A”when the subject is the data.
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that is a constant (such as 0.05) specified by the analyst before
seeing the data as the desired upper bound for the error rate of
a rejection rule over an entire sequence of datasets generated
from the model (Neyman 1977; Lehmann 1986). Specifically,
« is determined independently of the data, based on the cost
of false rejections: Higher o would be used by those for whom
false positives are of minor consequence, and lower o would be
used by those for whom false positives are of major consequence
(Lakens et al. 2018). Since decision consequences could vary for
different stakeholders in the same setting, different readers of
the same study report may well have different losses from false
positives and false negatives, and thus different a-levels, in turn
leading to conflicting decisions based on seeing the same data
and thus the same observed P-value p.

Nonetheless, no such « is needed for the definition or pre-
sentation of P-values, nor does comparison of p to o« make the
number p an error rate. We can imagine a decision rule that has
an error rate o equal to the observed p, but o and p are different
quantities conceptually since p varies across samples and thus
cannot be prespecified. In the example, the rate ratio of 1.84
for renal adverse events corresponds to an estimated ibuprofen
coeflicient of B =1In(1.84) = 0.610 in an exponential-rate model,
with standard error o =1In(5.19/0.66)/2(1.96) = 0.526 and test
statistic for H: 8 = of f/6 = 1.159, yielding a P-value p of 0.25.
We can imagine a rule defined by “reject 8 =0 if its P-value
is less than o =0.25,” but no one stated that rule before seeing
the data let alone derived it from error costs. To describe the
observed p as a 25% Type-I error rate is thus at best a statement
referring to someone who had a prespecified o of 0.25 which
the P-value just happened by chance to equal. There is surely
no such person in the example, and thus the statement is a
completely unnecessary distraction: An accurate description of
the test result is simply that p for § = 0 was 0.25. Readers
who wanted to base a decision on that P-value alone could
immediately see whether 0.25 was above or below their own
cutoff o.

A small related point is the common confusion of the a-level
a with the actual probability that the test rejects H when H
is true (the Type-I error rate of the test, or test size). The
actual Type-I error rate of a test of the hypothesis H given the
assumptions A is often unknown to the investigator, because it
may deviate from « due to defects in A or discreteness of the
data.* In contrast, « is defined as the maximum tolerable Type-I
error rate, which is set by the investigator and thus is known; p is
then compared to this & to make decisions, on the assumption
that the corresponding random P is valid (which makes « equal
to the Type-I error rate).

4. Misleading Criticisms of P-values

4.1. P-Values Do Not Force Users to Focus on Null
Hypotheses—But Nullistic Jargon Does

A common criticism of statistical testing is that it forces users
to focus on irrelevant null hypotheses. There is no question
that many null hypotheses are indeed scientifically irrelevant
(Cohen 1994). This irrelevancy problem is not, however, a fault

4 When the test is a conservatively valid test of the entire model (assumption
set) A, discreteness becomes the only source of discrepancy.

of P-values, but is instead a product of traditional training
and an academic environment that makes users focus on such
hypotheses. While there are ongoing calls to abolish misleading
jargon involving “significance” (Amrhein et al. 2018; McShane
etal. 2018), almost no attempt has been made to correct Fisher’s
mistake of using “null hypothesis” for any tested hypothesis H,
ignoring that in ordinary English “null” is a synonym for zero
or nothing.” This tradition has led users to think and certain
experts to claim that statistical science is only about testing “null
hypotheses,” where “null” means “no association” or “no effect”
rather than any and all hypotheses of importance or concern
(Greenland 2004, 2017).

Breaking from Fisher’s misleading terminology, Neyman
(1977, pp. 104-106) instead called H the targeted or fested
hypothesis. But Fisher’s jargon has prevailed with the back-
rationalization that H is the hypothesis to be “nullified” by the
test, and was sustained by attempts to distinguish hypotheses
like B = 0 as “nil hypotheses” (Cohen 1994). Unsurprisingly,
then, the ill effects of Fisher’s usage continue to be seen in
the justly maligned cult of null-hypothesis significance testing
(NHST) (Ziliak and McCloskey 2008) in which P-values are
computed only for hypotheses of no effect, when they should
also be given for alternatives of relevance (e.g., the hypotheses
used to compute power in funding applications).

A more technically involved problem is excessive focus on
point hypotheses, which will be discussed below under sensitiv-
ity to sample size.

4.2. P-Values Are “Unreliable”—Exactly as They Should Be

It is often noted that P-values vary dramatically from sample
to sample even under ideal experimental replications (Good-
man 1992; Senn 2001,2002; Gelman and Stern 2006; Murdoch
et al. 2008; Boos and Stefanski 2011). As a consequence, some
researchers criticize P-values for being “unreplicable” or “unreli-
able” or “noisy;” or for failing to converge to some constant upon
replication or increase in sample size, as if a P-value is estimating
a parameter or “statistical significance” is a state of nature.
Parameter measurement is not, however, done by the
P-value, but instead by the estimator B: This estimator and
its standard error extract information on the systematic
component of data variation represented by g in the model
A. The observed p is computed from the remaining variation, as
captured by the absolute Z-score | B—b|/6 for testing 8 = b; this
test statistic can be viewed as a summary standardized residual
for comparing the submodel of A in which H is correct (8 =b)
to the embedding model A which has no restriction on 8. Upon
recognizing that a P-value is a function of what would be purely
random error under Hand A, it should be seen that by definition
it does not measure any parameter or population quantity—
quite the opposite: the P-value is a measure of random error
in the estimate, given H and A, rescaled (standardized) to a
uniform distribution. Similarly, a P-value for a test of fit of
the embedding model A may be based on a residual sum of
squares which is a rescaled measure of the noise or random

5 See, e.g., “null” in Oxford 2017: adj. 2. Having or associated with the value
zero; noun 1. Zero. Merriam-Webster 2017: adj. 6. of, being, or relating to
zero; 7. zero.



error left after extracting what the model A says is the signal
or systematic variation (the fitted regression equation or table
of fitted values, which is the signal remaining after the noise is
filtered out).

Thus, if H and A are correct, the random P will (if valid)
bounce around uniformly across the unit interval, producing
p < a about 100a% of the time. This is exactly what P should do,
because in that case it should be pure uniform noise (random
error) which is supposed to vary unpredictably from study to
study (Senn 2001, 2002). If across replications of data collection
and analysis P does not look like uniform noise, we are warned
that at least one of H or A is incorrect, i.e., we are using a
wrong hypothesis or wrong model for inference (signal extrac-
tion) or decision. That is exactly what statistical tests are for. If
instead P is uniform, we can only say that this particular test
is insensitive to whatever violations of H or A are present (in
decision-theoretical terms: for these violations, the test based on
P has power equal to its Type-I error rate, meaning it conveys
no information about those violations). Thus, P-values provide
diagnostic or warning mechanisms for hypothesis or model
problems, and like all such mechanisms are fallible.

4.3. P-Values Confound Effect Size with Sample
Size—Exactly as They Should

The concept of “statistical compatibility” has been a major
obstacle to proper understanding and interpretation of P-
values, as the concept involves comparing the magnitude of
discrepancies between observations and expectations against
the estimated random variability in those discrepancies. It is
in fact often lamented that P-values confound effect size with
sample size, and they are even banned on account of this (Lang
et al. 1998). That is ironic because this “confounding” reflects
how P-values are doing their job correctly: The distance of (say)
an estimate from a model prediction should constitute evidence
against the model; nonetheless, how much evidence that distance
corresponds to should depend on the precision of the estimate.

In particular, the information against H: 8 =0 given the
model A is a function of both the absolute deviation (distance
from estimate to hypothesized value) |,4§ — b| and the standard
error & where 8 and 6 correspond to the imputed signal and
noise level based on the auxiliary (decoding) assumptions in A.
These quantities are combined in the test statistic | B —b|/6 for
H given A. Because the precision & ~2 of A is proportional to the
sample size n, the test statistic depends directly on n and on the
distance | — b| from the estimate § to the hypothesized value
b, and so p is inversely related to both 7 and | — b|, exactly as a
consistent measure of evidence against § = b should be. In the
example, for H: 8 = 0 the distance is | B—0| = 0.610, again with
a p of 0.25; if, however, the precision of the study were increased
fourfold (e.g., by quadrupling the size # of the cohort), & would
be halved and the same distance of 0.610 would give a p of 0.02,
reflecting the fact that evidence against H represented by a given
deviation should increase with .

4.4. P-Values Do not Overstate Evidence Against
Hypotheses—People Do

Among fair criticisms of P-values are that they are too
easily confused with posterior probabilities, and that they are
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distortive evidence measures that need logarithmic transfor-
mation to gauge properly (e.g., Bayarri and Berger 1999; Boos
and Stefanski 2011; Greenland 2017, 2018). Thus, consider
again the Shannon-information or S-value transform of the
observed P-value, s= —log,(p), which is a measure of the
information against H encoded in the test statistic (the
refutational information supplied by the test given the model
A).® The negative log transform of a probability is also known as
the self-information or surprisal for observing an event that has
probability p (Shannon 1948; MacKay 2003; Fraundorf 2017).
With base-2 logs, the units for measuring this information are
bits (binary digits); the first integer larger than s is the number
of binary digits (indicator variables) needed to encode p.”

There are other formal definitions of statistical information,
but the S-value s is a simple cognitive device for appreciating
the information conveyed by p without reference to contextual
details outside of those used to specify H and A. Notably, the
information measure s refers to the observed tail probability
p (rather than the random P) and thus represents a relation
between the observed data and the model formed by combining
H with A. A useful consequence of its log scaling is that it
makes the information additive across independent tests, a fact
used to create meta-analytic P-values (Cox and Hinkley 1974,
p- 80). To provide an intuitive interpretation of the information
conveyed by s, let k be the nearest integer to s. We may then
say that p conveys roughly the same information or evidence
against the tested hypothesis H given A as seeing all heads in
k independent tosses of a coin conveys against the hypothesis
that the tosses are “fair” (each independent with chance of heads
= 1/2) versus loaded for heads; k indicator variables all equal to
1 would be needed to represent this event.

As an illustration, the chance of seeing all heads in 4 fair
tosses is 1/2* = 0.0625. Thus, under the model A, observing
a P-value of 0.05 conveys only s= —log,(0.05) =4.3 bits of
information against H: 8 = b, which is hardly more surprising
than seeing all heads in 4 fair tosses. In the ibuprofen example,
the P-value of 0.25 is no more surprising if 8 = 0 than seeing
2 heads in 2 fair tosses, since s = — log, (0.25) = 2. For contrast,
B =1In(2) corresponds to a doubling of the adverse-event rate
with ibuprofen; the P-value from the statistic | ,é —InQ2)|/6 =
0.158 is 0.87, for which s= —log,(0.87) =0.19, showing that
there is even less information against a doubling of the adverse-
event rate with ibuprofen than against no difference (8 =0).

By this measure, and contrary to certain commentaries (e.g.,
Goodman 1999; Sellke et al. 2001; Hubbard and Lindsay 2008),
P-values do not overstate evidence against hypotheses or mod-
els: The observed p is just a hypothetical probability or percentile
computed from H and A. Any overstatement of the evidence
conveyed by p is from those who (based on the entrenchment
of « = 0.05 in automated decision rules) mistakenly think a
p of 0.05 represents just enough evidence to reject the tested
hypothesis or model. Furthermore, under this interpretation
any changes in the P-value p and thus the S-value s as a result

6 Good 1956, pp. 1132; 1983, 146 suggested using this measure with center-
ing around its mean E{— log, (P)}, the Shannon entropy of P (which for valid
Pis itself is maximized when H and A are correct).

7 In base-10 logs the units are called Hartleys; when H: 8 = 0 this measure is
sometimes called the logworth of 8. The first integer larger than — logyq (p)
is the number of decimal digits needed to encode p.
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of changing the embedding model or tested hypothesis (e.g.,
from changing from a single to a multiple comparison) correctly
reflects the differences in the information supplied by the data
against the different models or hypotheses. Yet, the S-value also
corroborates the commentaries by revealing that a p of 0.05
maps into only 4.3 bits of refutational information, showing that
interpreting a p of 0.05 as “borderline evidence” is nothing more
than a bad cultural habit. This is an underlying cognitive issue
which can be seen without use of machinery such as prior spikes
or Bayes factors (which even some Bayesian sympathizers find
objectionable, e.g., Casella and Berger 1987ab; Gelman 2013;
Greenland and Poole 2013).

4.5. P-values are Sensitive to Sample Size—Exactly
as They Should Be

Using the S-value s= —log,(p) to measure information in
a test statistic, P-values obey the refutational version of the
P-postulate (less accurately termed “the o postulate”): Equal
P-values correspond to equal refutational information against
the tested hypothesis H or the tested model A (Royall 1986).
This property is often criticized, e.g., because two studies may
provide the same P-values for the same test hypothesis and
yet may show very different observed associations (Greenland
et al. 2016, point 17). This criticism points to the necessity
of considering additional background (contextual) information
about what violations of H are of practical importance. A related
criticism is that the embedding model A consists of all auxiliary
assumptions used for inference, including explicit assumptions
such as homogeneity of effects and random sampling or treat-
ment randomization, and less-often stated assumptions such as
no database errors or selective analysis reporting. As such, A is
never perfectly correct; hence, for large enough samples p will
become very small and thus s will become very large even if H
is correct.

It follows that the test may now indicate that at least one or
both of H and A are strictly false even if both are good enough
for practical purposes; thus the criticism could be restated as
“In large samples, P-values become too sensitive to small devi-
ations from H or A” Bayesians extend this criticism by plac-
ing a point mass of prior probability on H and spreading the
remainder over a restricted family of alternatives (usually the
family of all models with 8 a known constant in the same
embedding model A). A consequence of this artifice is that
data supplying considerable information against H according
to some criterion « for p or —log(e) for s may still increase
the posterior probability of H given A (the Jeffreys-Lindley
paradox; see, e.g., Royall 1997; Senn 2001; Spanos 2013).

A crude fix for this large-sample sensitivity of P-values to
unimportant discrepancies is to lower the a-level for rejecting H
as the sample-size increases (Royall 1986). This fix is, however,
only a demand for more information to reject H or A as the
sample size increases, which ignores actual error costs on which
a should be based. Furthermore, these costs and demands are
irrelevant to measuring the statistical information given by the
test. In fact, any valid and efficient test should detect model
imperfections when given enough data information, even if
those are of no practical consequence. Instead the defect lies in
the traditional focus on point test hypotheses like 8 = b (Casella

and Berger 1987ab), and a failure to pay due attention to the size
of the observed discrepancy | — b| in practical terms.

Accounting for practical importance instead requires speci-
fication of tolerances for imperfections, such as a maximum tol-
erance for the actual discrepancy |8 — b|. One way to do so is to
replace point targets such as H: § = b with interval targets such
as H: |8 — b| <c, where [—c, ] represents an interval deemed
practically equivalent to no discrepancy (8 =b). It may even
make more sense contextually to reverse the role of the test and
alternative hypothesis, so that the tested H becomes |8 —b| > ¢,
as in equivalence testing (Berger and Hsu 1996; Senn 2008;
Wellek 2010).8 Other examples of role reversal include risk-
limiting audits (Lindeman and Stark 2012). In all these cases,
the observed P-value now measures data compatibility with
the composite hypothesis H given A, and the S-value measures
information against that H given A. Upon recognizing these
hypotheses as more contextually relevant than § = b, sensitivity
to sample size ceases to be a valid objection to P-values; it is
rather an objection to point test hypotheses, reminding us that
all our models have imperfections that become noticeable with
enough data. It should be reassuring that P-values and S-values
conform to this sound intuition.

An opposite objection is that P-values or S-values are insen-
sitive insofar as they ignore features of the data that may be
taken as evidence against the model (such as implausible esti-
mates). This is true, but reflects nothing more than the limited
information capacity of any single number such as a point
estimate or confidence limit. A one-dimensional summary of
multidimensional information is simply not a sufficient statistic
for inference; hence, further information (such as residual plots
and P-values for alternative hypotheses or models) will also be
needed to make sensible inferences. A small p only warns that
something may be wrong with the hypothesis H or embedding
model A, not what is wrong or that they are unsafe to use.
The kind of model updating that would follow from an initial
check depends on focused prior information, diagnostics, and
suspicions about model violations; for example, poor fit of the
embedding model A is often addressed by relaxing (expanding)
that model to address detected imperfections (e.g., by adding
higher-order terms) (Box 1980).

Conversely, a large p only means the test did not provide
much information against the tested hypothesis or model, and
is not a “safety signal” The S-value reveals that no parameter
value inside a 95% confidence interval has more than 4.3 bits
of information against it, supporting recommendations to view
the interval interior as a region of hypotheses highly compatible
with the data, rather than overconfidently viewing its exterior
as a region ruled out by the data (Poole 1987ab; Greenland
et al. 2016). In the ibuprofen example, this region of high
compatibility for the rate ratios exp(8) extended from 0.66 to
5.19, revealing that the study (even if otherwise perfect) was

8 There are intricate logical and technical issues in extending P-values to
composite H, e.g., see Berger and Boos 1994; Berger and Hsu 1996; Bayarri
and Berger 1999, 2000, 2004. Some extensions may be rejected on the
grounds that they lead to logical incoherencies, but Schervish (1996) also
rejects the coherent extension based on maximizing p over H; the nega-
tive log of that supremum does, however, provide a lower bound on the
information against H.



in fact practically uninformative about possible adverse effects
of ibuprofen on renal outcomes, since anything from a 1/3 rate
decrease (RR=1/3) to a fivefold rate increase (RR =5) has less
than 4.3 bits of information against it. Yet, the study abstract
concluded that rates of renal adverse events among infants
“were not different between the ibuprofen (+/-acetaminophen)
and acetaminophen-only groups,” displaying a common type of
nullistic cognitive blindness (McShane and Gal 2017; Greenland
2017) to the practical uninformativeness of the quoted results.
In contrast, an accurate report would have said “Our study
lacked sufficient information to reach any useful inference about
adverse renal events comparing ibuprofen to acetaminophen
alone; much more data would be needed to address ibuprofen
safety concerns”—albeit under current journal publication
criteria such an honest conclusion would make publication
difficult. One could further remark that there is almost 10
bits of information against a 2/3 rate decrease (RR=1/3) and
a 10-fold rate increase (RR =10) for each have p =~ 2710 but
that would only distract from the inadequacy of the study for
safety assurances.

4.6. P-Values Depend on Investigator Sampling
Intentions—Exactly as They Should

Nowhere do statistical principles seem to clash more persis-
tently than in the role of intentions or analysis plans (proto-
cols) in inference (see, e.g., Bayarri and Berger 2004, sec. 5).
Consider the claim that “if we stick to the short-run perspec-
tive when measuring evidence, identical data produce identical
evidence regardless of the experimenters’ intentions” (Good-
man 1999, p. 1000). Without possibly questionable qualifica-
tions, this claim is false. Consider one experiment (which is
a very short run) that reports p=0.004 for H: RR=1 with a
point estimate for RR of RR= exp(/é) = 1.8 and a likelihood
ratio of over 50 for comparing RR=2 to RR=1. If the experi-
menter intended to follow best practices and reported doing so,
we might well regard those results as providing some credible
evidence (s = —log,(0.004) =8 bits) against H. But suppose
we discover that the experimenter’s intention was to produce
data that gave p <0.005, if necessary by postrandomization
reallocation and exclusions; we should then take the resulting
data as providing little or no evidence regarding H or RR in
general.

One could say the experimenter’s intentions do matter in
this example because in the first case they leave the sample
space restricted only by the initial valid study design, whereas
in the second case they further restrict the sample space to
samples with p < 0.005. The only way we might reasonably
discount these intentions in measuring the data evidence is if
we knew with certainty that the intentions produced no action
that changed the sample, e.g., if we knew the initial treatment
allocation happened to give p = 0.004 and so led to no manipu-
lation by the ill-motivated experimenter. If, however, we had no
such information, we would have to rely on the probability that
manipulation would prove unnecessary, which would be 0.005
if H were correct. Seeing p = 0.004 (or a correspondingly small
Bayes factor for H) would then only provide us with evidence
against the combined hypothesis that “H is correct and there
was no experimental misconduct” Thus, intentions matter even
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though their effects must be mediated through experimenter
actions and reporting.

Discovering deceptive intentions of the sort just described
should lead us to alter our embedding model in a way that
changes the likelihood function for RR from its form under
honest intentions (e.g., the probability of RR=18whenRR =1
would be much higher with deceptive than with honest intent);
thus accounting for such intentions need not be controversial.
The ongoing controversy instead concerns intentions which
alter p but leave the likelihood function unchanged, as in
optional-stopping problems. This is a vast topic, but briefly: The
dependence of p on samples not in fact observed (counterfactual
data) leads some to reject it as an evidence measure in favor
of pure likelihood or Bayesian statistics (Berger and Wolpert
1988; Edwards 1992; Royall 1997; Goodman 1999). For many
statisticians, however, the full sampling distribution (including
counterfactual datasets) encodes important information about
the data-generating mechanism (e.g., Cox and Hinkley 1974;
LeCam 1988; Lane 1988; Ritov et al. 2014, p. 635)° leaving
P-values as basic tools for checking assumptions even if
the final results might be reported as posterior probabilities
(Box 1980).

The dependence of P-values on counterfactual data is thus
seen as a means of allowing for assumption uncertainties
without specifying all alternatives (as in tests of fit that
allow for unforeseen types of model violations). From this
perspective, the insensitivity of likelihood ratios to coun-
terfactual data reflects an information loss which can be
extreme in high-dimensional problems (where likelihood-
based procedures may provide no consistent inference yet
valid P-values can be constructed from the full sampling
distribution; see Robins and Wasserman 2000, sec. 5; Ritov et al.
2014).

5. Conclusions

P-values are often criticized for having properties they should
possess under correct interpretations, and for encouraging mis-
use and misinterpretation of data. Unquestionably, P-values
have proven problematic for correct teaching, description, and
usage, as evidenced by the many common misinterpretations
(Greenland et al. 2016). These problems are aggravated by the
distortive scaling and unwarranted dichotomization of P-values,
the misleading and inconsistent jargon surrounding their defini-
tions and description, and the misplaced criticisms which blame
P-values for ill-conceived traditions surrounding their use and
interpretation (Hurlbert and Lombardi 2009). These problems
can be reduced by

1. focusing on definitions of P-values that make no reference
to o levels or decisions, in which the observed p is a tail
probability and its random counterpart P is a uniform variate
under the hypothesis and model used for its construction;

9 In terms used in this literature, P-values can violate the likelihood principle
(which says proportional likelihood functions should yield the same infer-
ences), but dissenters from the principle do not in practical terms regard
the likelihood function as a sufficient statistic outside of some narrowly
specified circumstances.
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2. computing P-values for contextually important alternatives
to null (nil or “no effect”) hypotheses, such as minimal impor-
tant differences;

3. rescaling p to the Shannon information (S-value)
s= —log,(p) to provide a better scale for measuring
the amount of information the test supplies against the
hypothesis;

and most of all

4. avoiding dichotomization of p or comparison of p to «c-levels
(see, e.g., Poole 1987a; Hoekstra et al. 2006; Hurlbert and
Lombardi 2009; Greenland et al. 2016, 2017; Amrhein et al.
2017,2018; McShane et al. 2018, 2017; Wasserstein and Lazar
2016).

It may be argued that exceptions to (4) arise, for example
when the central purpose of an analysis is to reach a deci-
sion based solely on comparing p to an «, especially when
that decision rule has been given explicit justification includ-
ing both false-acceptance (Type-II) error costs under relevant
alternatives and false-rejection (Type-I) error costs (Lakens et
al. 2018), as in quality-control applications. Such thoroughly
justified applications are, however, uncommon in observational
research settings.

It may then seem ironic that many writers who have cam-
paigned vigorously against rigid a-level hypothesis testing pro-
mote in its place a version of it in the form of the 95% confidence
interval. As with the 5% a-level from which it is derived, the
conventional 95% confidence level is divorced from any con-
sideration of error costs, and the resulting interval is typically
nothing more than the set of all values b for 8 for which
the test of B =b yields p > 0.05. It should thus be no surprise
that numerous examples (like the ibuprofen study) show that
confidence intervals have not provided the hoped-for cure for
testing abuse, but have instead perpetuated the dichotomania
and excessive certainty that plague research reports. And there
is no basis for expecting Bayesian tests or posterior intervals to
be treated more wisely.

Atbest, a 95% confidence interval roughly indicates an entire
region of high compatibility between the data and possible
parameter values within a given model, as judged for example
by having less than 4.3 bits of information against the values
inside the interval (Using S-values, a simpler and arguably better
range for claiming “high compatibility” would be a 5-bit interval
(&= 97% “confidence”). Thus it would be less misleading to
refer to these intervals as compatibility intervals rather than
confidence intervals, where “compatibility” only means that
the data supply limited information (not even 5 coin-tosses
worth) against the parameter values in the interval under the
model used to construct the interval. Parallel cautions would
apply to posterior probability intervals, with the rephrasing that
“compatibility” only means the data supply limited information
against the parameter values in the interval under the model and
prior distribution used to construct the interval.

It should be emphasized that this limitation represents a
paucity of information about the parameter in the data and
model, rather than decisive evidence in favor of values in the
interval or a refutation of values outside the interval. In par-
ticular, values not far outside a 95% interval also have limited
information against them, and may easily fall inside an interval

produced from another, equally plausible model. Such caution
is especially important when the model underlying the interval-
estimation method (including so-called robust methods) may
be incorrect in ways not accounted for by the model (such
as unmodeled or mismodeled measurement errors). In such
cases (which are the norm in health and social sciences), a
95% coverage or posterior probability description does not ade-
quately incorporate model uncertainty, and thus the interval so
described becomes an overconfidence interval (A more complete
discussion of these issues is given in Greenland 2018.).
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