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Carbon atoms self-assemble into the famous soccer-ball shaped
Buckminsterfullerene (C60), the smallest fullerene cage that obeys
the isolated-pentagon rule (IPR). Carbon atoms self-assemble into
larger (n > 60 vertices) empty cages as well—but only the few that
obey the IPR—and at least 1 small fullerene (n < 60) with adjacent
pentagons. Clathrin protein also self-assembles into small fullerene
cages with adjacent pentagons, but just a few of those. We asked
why carbon atoms and clathrin proteins self-assembled into just
those IPR and small cage isomers. In answer, we described a
geometric constraint—the head-to-tail exclusion rule—that per-
mits self-assembly of just the following fullerene cages: among the
5,769 possible small cages (n < 60 vertices) with adjacent penta-
gons, only 15; the soccer ball (n � 60); and among the 216,739 large
cages with 60 < n < 84 vertices, only the 50 IPR ones. The last
finding was a complete surprise. Here, by showing that the
largest permitted fullerene with adjacent pentagons is one with
60 vertices and a ring of interleaved hexagons and pentagon
pairs, we prove that for all n > 60, the head-to-tail exclusion rule
permits only (and all) fullerene cages and nanotubes that obey
the IPR. We therefore suggest that self-assembly that obeys the
IPR may be explained by the head-to-tail exclusion rule, a
geometric constraint.

Buckminsterfullerene � buckyball � self assembly � clathrin

Fullerenes are closed cages with an even number n � 20 of
three-connected vertices, 3n/2 edges, 12 pentagonal faces,

and (n-20)/2 hexagonal faces (1, 2). The soccer ball with n � 60
vertices is the smallest fullerene with all of its pentagons
surrounded (‘‘isolated’’) by hexagons. It is therefore said to obey
the ‘‘isolated-pentagon rule’’ (IPR) (2–5). No cage that obeys the
IPR is mathematically possible for 62 � n � 68, but IPR cage
isomers are possible for every even n � 70, the number generally
growing as n grows (2). In accord with the IPR, carbon atoms
self-assemble into the soccer-ball shaped Buckminsterfullerene
(C60) (1) and larger fullerene cages, but only those few that obey
the IPR, starting with the one IPR isomer of C70 (Fig. 1A) (6–9).

Various explanations have been offered for the IPR. Kroto
suggested that ‘‘strain-related instability’’ within the network of
� bonds was minimal for cages with isolated pentagons but
increased with pairs of adjacent pentagons, even more so with
clusters of 3 pentagons, etc (3). Schmalz and colleagues offered
a quite different explanation, that adjacent pentagons had
‘‘eight-cycles,’’ in violation of Hückel’s 4n � 2 rule, thus focusing
on diminution of � bond interaction by adjacent pentagons (4,
5). Later, because � orbital overlap is also reduced generally by
cage curvature (10, 11), they suggested that overlap would be
most greatly reduced at the sites of greater (and anisotropic)
curvature produced by adjacent pentagons (12). These mecha-
nisms work together for Buckminsterfullerene but not necessar-
ily for larger IPR cages and not for smaller cages with adjacent
pentagons, at least 1 of which is also formed by carbon (13, 14).

Here, we propose an alternate explanation for the IPR.
Initially focusing on the small fullerene cages (n � 60 vertices)
with adjacent pentagons into which the protein clathrin (15) and

carbon atoms self-assemble (13, 14) [e.g., 36-15 (the 15th isomer
with 36 vertices) and 28-2 (the 2nd isomer with 28 vertices)], we
described a geometric constraint, the head-to-tail exclusion rule
(16, 17). Among the 5769 small cages with adjacent pentagons,
the head-to-tail exclusion rule permits self-assembly of just 15.
It also permits self-assembly of the IPR soccer ball (n � 60).

When we investigated larger cages in the range 60 � n � 84,
we were surprised to discover that the head-to-tail exclusion rule
permits only (and all of) the 50 cages that obey the IPR in this
range of n. Might it permit some larger non-IPR fullerene?
There is precedent for such a concern; for example, the pentagon-
spiral algorithm (18) produces every 1 of �1 million fullerene
cage isomers before missing one with 100 vertices (19, 20). To be
regarded as an explanation for the IPR, the head-to-tail exclu-
sion rule would have to be shown to permit only and all IPR cages
for all n � 60. Here, by proving that the largest permitted cage
with adjacent pentagons is one with n � 60 vertices, we do so.
In addition, based on the physical mechanism underlying the
operation of the head-to-tail exclusion rule (17), that the head
to tail rule identifies fullerenes with severely nonplanar faces
that are unlikely to self-assemble and are energetically dis-
favored, we describe how the head-to-tail exclusion rule pro-
motes production of IPR cages.

Model
Dihedral Angle Discrepancy (DAD). The head-to-tail exclusion rule
relies on appreciation of ‘‘dihedral angle discrepancy’’ (DAD)
(16). As shown in Fig. 1B, a DAD is a vector that we draw along
an edge that abuts a pentagon at one end and a hexagon at the
other. Depending on the faces to the sides of the edge, we color
the DAD ‘‘green’’ (two side hexagons), ‘‘red’’ (a hexagon and a
pentagon), or ‘‘blue’’ (two pentagons). The dihedral angles
about an edge with a green DAD are 138.2° at its pentagon end
and 180° at its hexagon end, so the green DAD corresponds
physically to an increase (or broadening) of dihedral angle of
41.8° (17). This broadening requires that one or usually both of
the faces on either side of such an edge—the two hexagons
marked with asterisks in Fig. 1B in the case of a green DAD—
cannot be planar.

In the three-dimensional IPR 70 fullerene cage shown in Fig.
1A, we mark just one green DAD, with its tail at the pentagon
end of the edge and its head at the hexagon end. In the
corresponding two-dimensional ‘‘Schlegel diagram’’ representa-
tion shown in Fig. 1C, we mark all 20 of the green DADs. In Fig.
1A, the nonplanar side faces (hexagons) are evident along the
cinched ‘‘waist’’ of the IPR 70 cage.

Edges with ‘‘red’’ and ‘‘blue’’ DADs have adjacent pentagons
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(Fig. 1B). We mark a red DAD (Fig. 1B) in the 36–15 fullerene
cage (Fig. 1 A) and all 24 red DADs in the corresponding
Schlegel diagram (Fig. 1C). The nonplanar side hexagons are
also visibly nonplanar along the cinched waist of 36–15 in Fig.
1A. (The nonplanar side pentagons cannot be appreciated from
this figure.) We mark a blue DAD (Fig. 1B) in the 28–15
fullerene cage (Fig. 1 A) and all 12 blue DADs in the corre-
sponding Schlegel diagram (Fig. 1C).

The dodecahedron (n � 20) has only one type of vertex,
pentagon-pentagon-pentagon, and thus no DADs. The soccer
ball (n � 60) has only one type of vertex, pentagon-hexagon-
hexagon, and thus no DADs as well. All other fullerene cages—
including IPR ones—have more than one type of vertex, thus
some edges with a DAD, and thus some nonplanar faces (16).
For this reason, although from the point of view of graph theory
fullerene cages are described as convex polyhedra, from the
point of view of solid geometry they are generally neither convex
nor polyhedra (with exclusively planar faces). The existence of
these other fullerene cages, like the ones in Fig. 1 A for carbon
(IPR 70 and 36–15) and for clathrin (36–15 and 28–2), proves
that the presence of nonplanar faces does not necessarily exclude
self-assembly of a fullerene.

Rings. The nature—DAD or no DAD—of all of the edges of a
face can be assigned if the identities—pentagons and hexa-
gons—of all of its surrounding faces are known. We call such
arrangements Rings. Fig. 2A shows all 8 pentagon-centered
Rings (‘‘pent-Rings’’) and all 13 hexagon-centered Rings (‘‘hex-

Rings’’) from (16). In a fullerene cage, every pentagonal face can
be regarded as the central face of a pent-Ring, and every
hexagonal face can be regarded as the central face of a hex-Ring.
We can therefore label every pentagon or hexagon with its
pent-Ring type (e.g., 521) or hex-Ring type (e.g., 611). As can be
seen in Fig. 2 A, the edges of the central face of a Ring can have
0, 2, or 4 DADs. What is new in Fig. 2 A is how the Rings are
grouped for the purpose of this article’s proof, a critical advance
over the corresponding figure in ref. 16.

Head-to-Tail Exclusion Rule. As noted above, most of the different
fullerenes that have been isolated and identified have DADs and
thus nonplanar faces (e.g., Fig. 1). The head-to-tail exclusion rule
specifically excludes just the Rings that have DADs arranged
head-to-tail, namely, the 2 pent-Rings (521 and 531) and 4 hex-
Rings (621, 631, 632, and 642) grouped together in Fig. 2A Left.

Fig. 2B illustrates the physical basis for the head-to-tail
exclusion rule. Edges c and a in that figure are examples of
‘‘external edges’’ because they are external to the central face of
a Ring, and edge b is an example of a ‘‘central edge’’ because it
is an edge of the central face. ‘‘External rotation’’ refers to the
rotation (in a surrounding face of a Ring) of external edges from
one another, for example, edge c from external edge a about
central edge b. In Rings with head-to-tail DADs, the magnitude
of the external rotation about a central edge with DAD is equal
to nearly the entire DAD about that edge, for example, 41.8° for
an edge with a green DAD, and the resulting nonplanarity of the
surround face is very severe. In Rings without head-to-tail
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Fig. 1. Almost all fullerene cages have
edges with dihedral angle discrepancy
(DAD) and thus some nonplanar faces. (A)
An IPR fullerene cage (IPR 70) and two small
cages (36–15 and 28–2) with adjacent pen-
tagons, the first 2 self-assembled by carbon
atoms, the last 2 by clathrin. Just one DAD
is drawn in each cage. (B) When the faces at
the two ends of an edge are different, the
dihedral angle about that edge at its hexa-
gon end is broader than the dihedral angle
about that edge at its pentagon end, estab-
lishing a dihedral angle discrepancy (DAD).
With two faces (marked by asterisks) to the
side of such an edge that are both hexagons
(green DAD), or 1 hexagon and 1 pentagon
(red DAD), or 2 pentagons (blue DAD), the
magnitudes of the dihedral angles at the
two ends of these colored edges are differ-
ent, and the magnitudes of the DADs are
different (41.8°, 18.4°, and 14.6°, respec-
tively). (C) Each of the Schlegel diagrams of
the cages selected for part A shows many
DADs: 20 green ones for the IPR 70 cage, 24
red ones for the 36–15 cage, and 12 blue
ones for the 28–2 cage.
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DADs, the external rotation due to the DAD is shared among
surrounding faces, and the resulting nonplanarity of the sur-
rounding faces is much less severe (17).

Fig. 2C, the result of sighting down edge b in Fig. 2B, permits
appreciation of the severely nonplanar surrounding face external
to a green DAD edge in one of the excluded Rings (hex-Ring
631). In such excluded Rings, several of the surrounding faces
would be severely nonplanar, a geometry (or energy cost) that
would make self-assembly (or persistence) of excluded Rings
highly improbable (or fleeting) (17).

Cages Permitted by the Head-to-Tail Exclusion Rule. Correspond-
ingly, self-assembly of mathematically possible fullerene cage
isomers that contained excluded Rings would be improbable.
After excluding all such improbable cages for 20 � n � 84, the
head-to-tail exclusion rule permits only the 15 ‘‘small’’ (n � 60)
fullerene cages with adjacent pentagons shown in Fig. 3, the IPR
soccer ball (n � 60), and only and all of the IPR cages for 60 �
n � 84 (16). It permits no cage for 60 � n � 84 with adjacent
pentagons. In the whole range studied, 20 � n � 84, the largest
permitted cage with adjacent pentagons is 60–1784 (Fig. 3).

Because we follow An Atlas of Fullerenes (2) in numbering
isomers (e.g., isomer 1784 with 60 vertices), the highest num-
bered isomers have the most dispersed pentagons. With 1812
isomers for n � 60, isomer 1784 is close to having the most
dispersed isomers, but 60–1812—the soccer ball—wins that
distinction.

Results
First, we review why the head-to-tail exclusion rule permits any
fullerene cage that is IPR. Then we prove that the largest
permitted cage with adjacent pentagons is 60–1784, thus show-
ing that the head-to-tail rule permits only as well as all IPR cages
for all n � 60, not just for 60 � n � 84.

All IPR Cages Are Permitted. By definition, an ‘‘isolated’’ pentagon
has no adjacent pentagons. Fig. 2 A Middle groups together all of
the Rings that have no adjacent pentagons, that is, ‘‘IPR Rings.’’
There is just one IPR pent-Ring (501), but there are 5 IPR
hex-Rings (601, 611, 622, 623, and 633). Therefore, IPR cages
can contain only the 501 type of pent-Ring, a pentagon sur-
rounded by 5 hexagons, and these 5 types of hex-Ring. None of
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Surround
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Fig. 2. Rings may be grouped according
to their arrangements of edges with DAD.
(A) Each pent-Ring (or hex-Ring) has a par-
ticular arrangement of the 5 (or 6) faces
surrounding a pentagon (or a hexagon).
These may be grouped as follows: the Left
has Rings with head-to-tail DADs, all ex-
cluded; the Middle has permitted Rings
with no adjacent pentagons, thus IPR; the
Right has permitted Rings with adjacent
pentagons, thus non-IPR. (B) A DAD like a
green one in hex-Ring 611 or in hex-Ring
631 produces rotation of edge a (external
to the central face) from edge c (also exter-
nal to the central face) about the green
central edge (b), more so for a Ring with
head-to-tail DADs (e.g., 631). This ‘‘exter-
nal rotation’’ of edge a from edge c is equal
to the (dihedral) angle between the two
shaded planes in the surround face. (C)
Sighting down edge b in B shows clearly
this external rotation and the resultant
nonplanarity of a surrounding face that
would contain edges a and c.
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these Rings have head-to-tail DADs; therefore, none of these
IPR Rings are excluded by the head-to-tail exclusion rule;
therefore, all IPR fullerenes are permitted (16).

60–1784 Is the Largest Permitted Cage with Adjacent Pentagons.
Permitted non-IPR Rings. Fig. 2 A Right groups together all of the
permitted pent-Rings with adjacent pentagons (511, 522, 532,
541, and 551) and all of the permitted hex-Rings with adjacent
pentagons (642, 643, 651, and 661). Of particular note, each of
the central hexagons in the latter non-IPR hex-Rings ‘‘anneals’’
surrounding pentagons on one side of the Ring to pentagons on
the other side, thus limiting dispersal of pentagons. For example,
among its surrounding faces, hex-Ring 642 has 2 pentagons on
one side and 2 pentagons on the other side. Without the second
set of pentagons, the hexagon would have been hex-Ring 621
(Fig. 2 A Left), which has head-to-tail DADs and would be
excluded.
Pentagon doublets. We showed that among fullerenes with 20 �
n � 84 the largest permitted cage with adjacent pentagons is
60–1784, which has 6 pentagon ‘‘doublets’’ (Fig. 3). As just
noted, a hexagon with just one doublet in its surround would be
a hex-Ring 621, one of the excluded Rings with head-to-tail
DADs. Therefore, the doublets must be paired, as in the
surround of hex-Ring 642 (Fig. 2 A Right). Because no doublets
can be left unpaired, the 6 doublets in 60–1784 must be arranged
in sequence in a ring with 6 interleaved hexagons, each of them
a hex-Ring 642, as marked for 60–1784 in Fig. 3.

IPR cages can reach any size because each pentagon is

surrounded (‘‘isolated’’) by 6—or more—hexagons. Thus, it
could be supposed that a cage with 5 pentagon doublets and 2
isolated pentagons might be larger than 60–1784. In fact, that
cage is 50–271 in Fig. 3, a smaller cage. That cage has 5 pentagon
doublets arranged in sequence in a ring with 5 interleaved
hexagons, each of them a hex-ring 642, similar to the arrangement
in 60–1784. However, cage 50–271 is smaller than 60–1784 because
the ring of 5 pentagon doublets is smaller than the ring of 6.

A hypothetical cage with a ring of fewer than 5 pentagon
doublets would be even smaller, but in any case, no such rings of
doublets are possible because fullerenes cannot have square or
triangular faces, around which such a smaller Ring of 4 or 3
pentagon doublets could be arranged.
Longer linear strings, Rings, and cycles of pentagons. A linear string of
3 hexagons is present in 44–89 (Fig. 3). Hex-Ring 631 in Fig. 2 A
Left has a linear triplet of pentagons in its surround but is
excluded by virtue of its head-to-tail arrangements of DADs.
Therefore, to avoid head-to-tail DADs, a permitted hexagon
with a linear triplet of pentagons in its surround must have
additional pentagons in its surround. One such permitted hex-
Ring, 643 in Fig. 2 A Right, contacts a 4th pentagon opposite the
linear triplet of pentagons. As a result, the hexagons that line a
linear string of 3 pentagons in cage 44–89 (Fig. 3) are a
combination of the 642- and 643-types of hex-Ring. The strings
of pentagons are thus kept close to one another by the ‘‘anneal-
ing’’ hexagons, the result being a small—just 44 vertices—cage.

Similarly, in Fig. 3, hex-Rings 642 and 643 anneal linear strings
of 4 pentagons (42–45 and 44–75), 6 pentagons (40–38), and 12

Fig. 3. For fullerenes with 20 � n � 60 vertices, the head-to-tail exclusion rule permits only these 15 isomers with adjacent pentagons and the IPR soccer ball
(data not shown). The isomers are represented by Schlegel diagrams produced by the Carbon Generator (CaGe) program (available at www.mathematik.uni-
bielefeld.de/�CaGe) (36). For any given n (e.g., 50 vertices), isomers are specified by number—the highest numbered one (e.g., the 271st isomer, thus 50–271)
having the most dispersed pentagons (2)—and also by symmetry point group (e.g., D5h). Hex-Rings are numbered as in Fig. 2A. Strings and rings of pentagons
are outlined by thick edges.
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pentagons (to itself) (38–17), linear rings of 6 pentagons (36–15)
and 10 pentagons (40–39), and a linear cycle of 12 pentagons (to
itself) (36–14). With arrangements of pentagons longer than a
doublet, all of these cages have � 60 vertices.
Pentagon clusters. Extended clusters of pentagons are found in
very small (n � 32) permitted cages, but there are no indepen-
dent clusters (e.g., 3 pentagons) in any of the permitted cages
(Fig. 3). Moreover, in larger cages, independent clusters would
be surrounded by hexagons, and the pentagons at the interface
would be excluded pent-Rings 521 or 531 (Fig. 4A).

Nanotubes with Non-IPR Caps. Proof that the largest fullerene with
adjacent pentagons permitted by the head-to-tail exclusion rule
is 60–1784 also means that the caps on nanotubes must be IPR.
The most likely challenge to this claim would come from the caps
extracted from the permitted small fullerenes in Fig. 3, a cap
being defined as a region with 6 pentagons. However, we need
only to add a single additional ring of hexagons—the very
beginning of the tube portion of the nanotube—at the circum-
ference of each cap to demonstrate excluded rings (Fig. 4B).
Moreover, two exceptions prove the rule: The cap from cage 50-271
is IPR; it is also the pentagon-centered half of the IPR soccer ball
and IPR nanotubes with caps composed of half of a Buckminster-
fullerene cage. The cap from cage 60-1784 is IPR as well; it is also
the hexagon-centered half of the one IPR cage with 72 vertices and
corresponding nanotubes. Thus, only nanotube caps that obey the
IPR are permitted by the head-to-tail exclusion rule.

Discussion
By exhaustive examination of the 216,739 large cages with 60 �
n � 84 vertices, we had shown that the geometric constraint

embodied by the head-to-tail exclusion rule permitted only the
50 IPR fullerenes for this range of n (16). Here, we have shown
why and proven that for all even n � 60, the head-to-tail exclusion
rule permits only and all IPR cages. Therefore, we suggest that
the head-to-tail exclusion rule could (and does) explain the
isolated pentagon rule (IPR). In addition, the head-to-tail
exclusion rule—but not the isolated-pentagon rule—permits
self-assembly of the small group of small fullerene cages with
adjacent pentagons shown in Fig. 3. One such carbon cage,
C36-15, has already been isolated and identified (13, 14), and
some assembly conditions have favored unspecified carbon cages
with 32, 44 and 50 carbon atoms (21, 22), numbers of vertices
represented among the small permitted cages in Fig. 3.

The IPR itself does not allow cages with � 60 vertices, cages
that necessarily have adjacent pentagons. Nonetheless, the orig-
inators of the IPR (3–5) pointed out that 2 isomers with 50
carbons (50–270 and 50–271) were special in having no adjacent-
pentagon configurations larger than a doublet. This line of
thinking was formalized by the suggestion that for every even n
without IPR cages, that is, in the ranges 20 � n � 58 and 62 �
n � 68, favored isomers could be identified as those with fewest
pentagon neighbors (2). Likewise, it would be possible to identify
lowest-energy isomers for any n, perhaps by measuring curvature
energy (23), and likely produce the same list of fewest-pentagon-
neighbor isomers.

By contrast, the head-to-tail exclusion rule permits isomers
with adjacent pentagons, but only a subset of n, the ones shown
in Fig. 3. It permits no isomers with 30, 34, 46, and 48 vertices,
and of particular note, no isomers with 52–58 and 62–68 vertices.
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Fig. 4. Independent clusters of pentagons
and nanotubes with non-IPR caps are ex-
cluded by the head-to-tail exclusion rule.
(A) In these independent clusters, only pen-
tagons of an excluded type are labeled. In
larger cages, clusters would be surrounded
by hexagons, and the pentagons at the in-
terface would be an excluded type of pent-
Ring, as shown by the labeled faces. Adding
a pentagon to a cluster of 3 (3 � 1 in Fig. 4)
produces 2 permitted pent-Rings but leaves
2 excluded pent-Rings (labeled) at the top
of the cluster. Addition of more pentagons
to the cluster could eliminate all of the
excluded pent-Rings, but the resulting cage
(28–2 or 32–6 in Fig. 3) would be very small.
(B) In these nanotube caps, only faces of an
excluded type of ring are labeled. Caps
(containing 6 pentagons) are taken from all
of the permitted cages with adjacent pen-
tagons in Fig. 3. With two exceptions, en-
circling each cap by a ring of hexagons is
enough to show excluded pent-Rings and
excluded hex-Rings. The two ‘‘exceptions’’
are the caps from cage 50-271 and cage
60-1784, which have no adjacent penta-
gons and thus obey the IPR.
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Indeed, we have proposed that the abundance of C60 could be
due to these large gaps on both sides of n � 60, gaps that leave no
nearby smaller or larger cages into which assembly could settle (16).
(Similarly, the abundance of the IPR C70, second only to C60, may
be related to the gap from 62 to 68.) Thus, the head-to-tail exclusion
rule explains not only the IPR but also why Buckminsterfullerene
is the most abundant of the IPR carbon fullerenes.

Prior models for IPR fullerene production, including the
Pentagon Road (24, 25), the Hexagon Road (26), and fusion of
large carbon cycles (27–29), invoke cage growth and internal
reorganization to eliminate pentagon adjacencies (30). To-
gether, these processes are supposed to come to an end when a
stable structure like Buckminsterfullerene or larger IPR cage is
reached (31). Based on the head-to-tail exclusion rule, we
proposed the ‘‘Probable Road’’: Carbon atoms would more
probably complete Rings with planar faces or Rings with modest
nonplanarity than the excluded Rings with head-to-tail DADs,

the severely nonplanar ones (16). We have now shown that the
only large fullerenes that could self-assemble, those with none of
the excluded Rings, would be the IPR ones.

We suppose that 4 mechanisms could contribute to the operation
of the Probable Road. As suggested by Fig. 2C, 2 carbon atoms
would be unlikely to bridge the gap between the ends of edge c
and edge a in an excluded hex-Ring, and 1 carbon atom would
be unlikely to bridge the gap between such disparate ends in an
excluded pent-Ring. Such a kinetic barrier could operate during
growth (i) and reorganization (ii). In addition, higher order
(resonant and double) bonds, which enforce planarity, tend to
point away from pentagons (32–35) and thus locate along edges
with a DAD (e.g., edge b in Fig. 2B). The severe rotation out of
planarity of edges c from a about edge b in Fig. 2B would thus
incur a high energy cost. Such a thermodynamic barrier could
also operate during both growth (iii) and reorganization (iv).
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