
0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2537266, IEEE
Transactions on Biomedical Engineering

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1

4-D Flow Control in Porous Scaffolds: Toward a
Next Generation of Bioreactors

Khalid Youssef, Member, IEEE, Nanette N. Jarenwattananon, Brian J. Archer, Julia Mack, M. Luisa Iruela-Arispe
and Louis-S. Bouchard

Abstract—Tissue engineering (TE) approaches that involve
seeding cells into pre-determined tissue scaffolds ignore the
complex environment where the material properties are spatially
inhomogeneous and evolve over time. We present a new approach
for controlling mechanical forces inside bioreactors, which en-
ables spatiotemporal control of flow fields in real time. Our
adaptive approach offers the flexibility of dialing-in arbitrary
shear stress distributions and adjusting flow field patterns in a
scaffold over time in response to cell growth without needing
to alter scaffold structure. This is achieved with a multi-inlet
bioreactor and a control algorithm with learning capabilities to
dynamically solve the inverse problem of computing the inlet
pressure distribution required over the multiple inlets to obtain
a target flow field. The new method constitutes a new platform
for studies of cellular responses to mechanical forces in complex
environments and opens potentially transformative possibilities
for TE.

Index Terms—shear stress, bioreactor, porous scaffold, flow
control, tissue engineering

I. INTRODUCTION

REGENERATIVE medicine aims to produce fully func-
tional tissue for implantation, often in an ex vivo set-

ting, for purposes of replacing or regenerating organs. A
common TE protocol is to seed cells into pre-determined
tissue scaffolds, adjust the physical conditions such as flow
rate, nutrients and growth factors, and then measure cell
response. In recent years, the role of mechanical forces, such
as shear stress, has been recognized in the context of regulating
proliferation, migration and morphogenesis [1], [2], [3], [4],
[5], [6]. Consequently, considerable efforts have been devoted
to tailoring shear stress distributions arising from flow fields
applied to bioreactors as a means to study the cellular response
due to spatial gradients [7], [8], [9], [10], [11]. The state of
the art approach involves creating materials with local porosity
gradients [12], [13], [14], [15], [8], [9], [16], [17]. While this
is suitable for setting initial conditions in a scaffold at the
expense of high material complexity, it fails to accommodate
the dynamical aspect where different stages of development
lead to changes in material properties.
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It is thus important to develop novel methods that achieve
viable growth of thick, immunocompatible tissue. In this
article, we present the engineering aspects of a general
methodology tailored to spatiotemporally control mechanical
forces inside bioreactors. Advantages of our method include
the creation of complex flow fields in 3-D environments
and the possibility of real-time control in response to cell
growth without altering the composition or structure of the
scaffold material itself. With the temporal aspect included as
the fourth dimension, we refer to the method as 4-D flow
control. Our approach can be also used in conjunction with
existing methods to enhance their capabilities and add the
time component to extend control beyond the initial stages. By
adjusting inlet pressures to a multiple-inlet bioreactor we can
produce arbitrary flow fields, generating various mechanical
force distributions within a single scaffold. Real-time control
can be achieved by employing this flow control strategy as
part of a feedback control loop that is guided by non-invasive
imaging. The spatial distribution of mechanical forces can be
altered on demand by dialing-in the appropriate inlet pressure
at various inlets, thereby offering flexible means of dynamic
control that can adapt to structural changes.

The design and construction of a 10-inlets bioreactor is
shown in Fig. 1. The bioreactor is made of non-magnetic
material for compatibility with a nuclear magnetic resonance
(NMR) environment where maps of fluid velocity inside the
reactor are measured [18]. From the flow maps, we calculate
the shear rate distributions using finite-difference approxima-
tions [19]. This provides an estimate of interstitial flows in
the porous scaffold matrix. NMR was selected as the method
to assess material properties because of its ability to probe
opaque media in a non-invasive manner. Namely, it can be used
for investigating the hydrodynamic properties of biomaterials
through non-invasive measurements of shear rate, hydraulic
pressure and fluid permeability, as demonstrated in recent
studies [20], [19].

Our approach operates in two phases, a training phase
and an adaptive feedback phase. The first phase involves
training a multi-layer perceptron (MLP) to learn the nonlinear
relationship between flows applied at the bioreactor’s inlets
and the shear rate maps resulting in the scaffold. In order
to reduce the need for experimental measurements, the MLP
is trained with examples obtained from computational fluid
dynamics (CFD) simulations that estimate patterns of flow and
shear rate based on known material properties, namely fluid
permeability and porosity [21], [9]. During this phase, a set
of inlet flow speeds is found that can be dialed-in to produce
a desired shear rate distribution within a scaffold. The second
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Fig. 1. Ten-inlet bioreactor. Design: (a) CAD drawing, bottom part; (b) CAD drawing, top part. Construction: (c) Actual reactor, bottom part; (d) Actual
reactor, top part; (e) Fully assembled 10-inlet bioreactor. Fluid region: (f) Proton density NMR image showing the fluid region; (g) Corresponding CFD
simulation. The inlets are labeled in (g) for use in Figs. 3, 4, 6, 7 and 9. In (f) and (g) the yellow box indicates the region shown in Figs. 3, 4, 6, 7 and 9.
(h) SEM micrograph depicting the pore space of the cellulose scaffold. (i) SEM micrograph depicting the pore space of the collagen scaffold.

phase is where the trained system is applied to adaptively
control flow fields in the actual scaffold. Here, non-invasive
NMR velocimetry measurements are used to determine flow
velocities and shear rate distribution in the scaffold. These
measurements can be used to provide feed back for adaptive
fine tuning or adjustment of the shear rate maps in the scaffold.

II. MATERIALS AND METHODS

A. 10-channel bioreactor design

A bioreactor featuring ten input channels and one output
channel was designed to demonstrate our method, as shown
in Fig. 1. Inlets are distributed around a chamber that holds
a 3 mm-thick scaffold. There are 3 inlets at a 45◦ angle
on each side, 4 inlets at the bottom and 1 output channel
at the top. Figures 1(a) and 1(b) show the CAD drawings
of the bioreactor design. Fig. 1(c) and (d) show the actual
bioreactor, and Fig. 1(e) shows the fully-assembled bioreactor.
The bioreactor and its parts were made of NMR-compatible
materials such as PTFE. The bioreactor is designed to fit in
a 40 mm-i.d. NMR imaging probe. Inlets are connected to
current-controlled mini proportional valves (Kelly Pneumatics,
Inc., Costa Mesa, CA). A programmable current regulating
circuit was designed to receive commands from a computer
program to set the current value at each valve. This enabled
computer controlled flow speeds at each inlet.

B. Scaffold

Two different scaffolds were used in these experiments.
The first scaffold, a high porosity, high permeability cellulose
scaffold was used to demonstrate the ability to generate
various flow patterns. No cells were present in this scaffold.
The second scaffold was a high porosity, high permeability
biocompatible collagen scaffold (Ultrafoam, Central Infusion
Alliance 1050020). The collagen scaffold was used for cell
experiments to test the biocompatibility of the system and
demonstrate the ability to grow cells. Scaffolds were cut into
blocks of size 1.25 × 1.25 × 0.3 cm3. In Fig. 1(h), scanning
electron microscopy (SEM) micrographs (JEOL JSM-6700)

reveal pore size and morphology of the scaffolds. Prior to
SEM, scaffold samples were sputter-coated with a ∼5 nm
layer of gold to enhance contrast and reduce sample charging.
Porosity was calculated to be approximately 90% for the
cellulose scaffold and 93% for the collagen scaffold. Porosity
was determined by measuring the water volume absorbed by
the scaffold, and dividing it by the total volume of the wet
scaffold. To accurately determine the volumes, a replica of
the bioreactor chamber, i.e. the region that holds the scaffold
inside the bioreactor, was created in a plastic block. The weight
of the empty chamber with the dry scaffold was measured
using a precision balance. The scaffold was then emerged in
water and placed in the chamber and the chamber was filled
with water to the fullest. The chamber was then closed tight
allowing excess water to exit. The weight of the chamber
with the wet scaffold inside was measured. Water volume was
determined by subtracting the weight of the empty chamber
with the dry scaffold from the weight of the full chamber with
the wet scaffold inside. The volume of the wet scaffold is the
same as the chamber volume, which is easily calculated from
the known inner chamber dimensions. This gives a consistent
measurement of the effective porosity corresponding to the wet
scaffold inside the chamber, where swelling of the scaffold
becomes irrelevant.

Fluid permeability of the scaffolds was measured in a fluid
permeability flow chamber with a 1 cm diameter cross section
area [19]. Scaffolds being measured were cut into discs
10.1 mm in diameter and 5.3 mm thick prior to wetting. Length
of the scaffold and diameter were measured with WorkZone
Digital Caliper with a range of 0-200 mm. Scaffolds were held
in place by two large pore-density filters. Known flow rates
were then applied ranging from 5 to 60 mL/min. The static
pressures entering and exiting the flow chamber were also
measured. The pressure drop across the scaffold was found
by subtracting the pressure drop across the chamber without
the scaffold from the pressure drop across the chamber with
the scaffold. Pressure was measured using Omega DPG8000
pressure gauges. Two units were mounted to the flow path
using pipe T connectors, and digital readouts were read from
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the device and recorded once the pressure had stabilized. The
permeabilities at each flow rate were then averaged to give a
final permeability. Using this information, fluid permeability
was determined from Darcy’s law (1)

κ = − µLQ
A∆P

, (1)

where κ is the fluid permeability, µ is the viscosity, L is the
scaffold thickness, Q is the flow rate, A is the surface area, and
∆P is the pressure drop across the scaffold. The calculated
permeabilities were 6.13× 10−7 cm2 and 2× 10−11 cm2 for
the cellulose and collagen scaffolds, respectively.

C. Adaptive control algorithm

Machine learning methods including artificial neural net-
works are now commonly used to solve a variety of problems
in cell biology [22], [23]. We present a novel multiple-input,
multiple-output (MIMO) adaptive intelligent control algorithm
based on MLP. Our algorithm consists of a fast search method
designed to guide a MLP to perform an initial estimation of
required inlet speeds using CFD simulations, by learning the
nonlinear relationship between inlet flow speeds and target
parameters. The scaffold was treated as a grid with nine equal
regions. The algorithm was configured to create shear rate
patterns by simultaneously controlling shear rate mean values
in these regions. Thus, the problem in our case involves ten
inlets and nine parameters. Parameter values can be adjusted
depending on the application requirements. For example, while
a 3×3 grid is sufficient in our case for demonstration purposes,
higher resolution can be achieved with more computational
time. In other applications, the grid can also be concentrated
on one small local region rather than the entire scaffold.

The working principle of the algorithm is illustrated in
Fig. 2(d). The pseudocode is provided in Algorithm 1 whereas
its parameters are listed in Table I. The search algorithm starts
with a target shear rate map specified by the user. Mean values
from different regions of the map are fed to a MLP as its input,
and the output produced by the MLP is used to determine
the flow speeds of all ten inlets required to reproduce the
desired target map as closely as possible. A new shear rate
map corresponding to the inlets’ flow speeds generated by
the MLP with D inputs is obtained (Oj) and compared to the
desired target (Tj) pattern using the cost function ξ1 of Eq. (2),

(ξ1)2 =
D∑

j=1

(
Tj − Tje

−(Oj−Tj)
2

2d2

Tj

)2

=
D∑

j=1

(
1−e

−(Oj−Tj)
2

2d2

)2

(2)
In principle one could employ a cost function that simply
measures the Euclidean distance between a given vector and
a target vector, as in Eq. (3),

(ξ2)2 =
D∑

j=1

(Oj − Tj)2. (3)

However, including a Gaussian membership function, as was
the case in Eq. (2) can relax the measurement constraints
by allowing a small margin of error where an approximate

measurement is considered acceptable. d determines the width
of the Gaussian function. Using a d value close to the
average target value “smoothes” the error space, which leads
to faster convergence. To prevent the search algorithm from
biasing towards relatively large target vector components, a
normalization is performed by dividing by the target vector,
as shown in Eq. (2).

For example, a target shear rate map can have high varia-
tions in shear rate values between different regions. Regions
with relatively high shear rate values will carry more weight
in the cost function. This can cause the obtained solution to be
less accurate in regions with relatively low shear rate values.
Normalizing as in Eq. (2) allows each region to contribute
an equal weight to the cost function regardless of the target
value in that region. When the values of Oj and Tj are close
to each other, the Gaussian function yields a value close to
one, and the contribution of the corresponding measurement
to the cost function is small. When the values of Oj and Tj
are far apart, the Gaussian function yields a value close to
zero, and the contribution to the cost function is large. Oj

denotes a measurement (observed value) whereas Tj denotes
the corresponding desired measurement (target value). By
measurement, we refer to a mean shear rate value associated
with one of the scaffold regions.

The initial MLP output does not yield the most accurate
solution. The search algorithm aims to find a solution that
is better than the one provided by the MLP, by following
a number of rules to introduce changes to the MLP output
as shown in the pseudocode below (see Algorithm 1). The
new solution is used to update the MLP weights as explained
in the following section. This guides the MLP to gradually
learn the relationship between the inlets’ flow speeds and
the target map after a number of iterations. The algorithm
was validated by applying it to a 2-input control problem
where the convergence path through the error space can be
visualized on a 3-D plot. Results from the validation are
shown in Fig. 2(a-c).

D. Solution by multi-layer perceptron

Multi-layer perceptrons have been shown to be universal
function approximators [24]. A MLP with D inputs, K out-
puts, one hidden layer with M nodes yields a K-dimensional
output vector ~̃yt whose k-th component is given by iterated
hyperbolic tangents:

ỹt (k) = tanh

 M∑
l=0

θ
(2)
l,k tanh

 D∑
j=0

θ
(1)
j,l xt (j)

 , (4)

where

z(l) = tanh

 D∑
j=0

θ
(1)
j,l xt (j)

 , (5)

and for which l = 0, . . . ,M are the outputs of the hidden
layer. We use the convention where xt(0) = 1 and z(0) = 1,
so that θ(1)0,l and θ(2)0,k represent biases to the transfer function.
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Fig. 2. (a-c) Two-input control validation results. The convergence path shows the search starts at a maximum, avoids getting stuck in a local minimum and
finds its way to a global minimum in a small number of steps. (a) 3-D plot of the error space. (b) 2-D contour projection of the error space. (c) Convergence
plot with y-axis corresponding to the cost function and x-axis corresponding to the iteration number. (d) System design of the control algorithm. A MLP
block gets its inputs from shear map measurements of the scaffold inside the bioreactor, and produces outputs to update inlets’ flow speeds such that the shear
rate map in the scaffold is closer to the target shear rate map. The MLP training is guided by the search algorithm that evaluates the MLP performance using
the cost function evaluation block (Cost), and determines the training samples presented to the MLP.

TABLE I
LIST OF THE ALGORITHM’S MAIN PARAMETERS.

Parameter Description Range Used Value
µ Learning rate µmin :µmax Automated
a Momentum amin :amax Automated
µmin µ lower bound >0 1.00E-06
µmax µ upper bound >µmin 5.00E-02
amin a lower bound >0 1.00E-06
amax a upper bound >amin 5.00E-02
dso Search step size multiplier >0 5.00E-01
ds Search step size: ξ.dso >0 Automated
ξ Cost function value NA Automated
D Number of MLP inputs >0 9
K Number of MLP outputs >0 10
boutput MLP output with current minimum cost NA NA
ξb Current best cost value NA NA
bcount Maximum MLP training epochs for current best output >0 3
d membership function dilatation parameter >0 3

The generalization to arbitrary numbers of hidden layers is
straightforward by nesting additional hyperbolic tangents. The
calculation of the vector ~̃y is called feed forward propagation.

A MLP with nine inputs corresponding to the nine scaffold
regions, and ten outputs corresponding to the ten channels is
used. Mean values from nine regions of the shear rate map
are stored in a vector denoted by ~xt and used as inputs to a
MLP whose transfer function is a hyperbolic tangent, has ten
outputs corresponding to the ten inlets of the bioreactor, and
includes two hidden layers with ten nodes each. The Back-
Propagation with Adaptive Learning rate and Momentum
term (BPALM) method [25] was used to update the MLP

weights. This technique is suitable in our case since the MLP
is trained online one target vector at a time, and since it
offers convergence acceleration as compared to the original
back propagation method proposed by [26] by introducing an
adaptive learning rate and momentum term.

E. CFD shear rate simulation.
Many complex models of porous media have emerged due

to advances in the field of CFD. However, they require a
detailed characterization of the effective-medium properties
of the scaffold in terms of the microscopic properties and
remain computationally expensive. Hundreds of simulations
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Algorithm 1 Control Algorithm pseudo-code
1: Initiate MLP inputs
2: Evaluate shear stress map for MLP outputs
3: Compare to target
4: ξb ← ξ
5: ξ1 ← ξ
6: count = 0
7: Reset
8: flag= 0
9: Reset input picking

10: Pick
11: Randomly pick one of the inputs
12: Increase its speed by ds
13: Evaluate shear stress map for resulting input
14: if ξ > ξb then
15: Decrease its speed by ds
16: Evaluate shear stress map for resulting input
17: if ξ > ξb then
18: goto Check
19: else
20: goto update
21: else
22: update
23: ξb ← ξ
24: count = 0
25: Update MLP
26: flag = 1
27: Check
28: if All inputs picked then
29: if flag = 1 then
30: goto Reset
31: else
32: count = count + 1
33: if count > bcount then
34: ξb ← ξ
35: count = 0
36: Update MLP
37: goto Reset
38: else
39: Perturb
40: Add random vector multiple of ds to input
41: Evaluate shear stress map for resulting input
42: if ξ > ξb then
43: goto Perturb
44: else
45: ξb ← ξ
46: count = 0
47: Update MLP
48: goto Reset
49: else
50: goto Pick

0

1

2

3

4

5

6x10−3

Fig. 3. Map of local Reynolds numbers. Measured across the scaffold region
under conditions of maximum flow rate at each input of the scaffold. This
region corresponds to the region highlighted by the yellow square in Fig.1(f)
of the main text. The average Reynolds number is on the order ∼ 10−3.

are required during the training phase, typically in the range
of the number of inputs multiplied by the number of iterations.
Consequently, we opted for a simple laminar flow model as
an approximation of the complex medium. While the laminar
flow model is not recommended for modeling porous media in
general, it is used here to save computational time. The porous
media was modeled as a distribution of circular obstacles as
shown in Fig. 1(g), where the porosity and permeability were
chosen similar to the scaffold. This approximation is justified
by Reynolds numbers calculation throughout the model us-
ing (6) when the maximum flow rate is applied to all channels
at once, where they are consistently much less than 1 in the
investigated flow range as shown in Fig. 3. Variations from
the more accurate and computationally expensive methods
that explicitly model the geometry of the microscopic pore
space are minimal. Due to the adaptability of the control
algorithm, as demonstrated in Fig. 5(d,e,f) and Fig. 6 (details
in the Results section), any inaccuracies produced by the
approximation can be compensated for in the second phase
where simulations are replaced with real NMR measurements.

ReCell(x, y) =
hρ
√
v2x(x, y) + v2y(x, y)

4µ
(6)

ReCell is the Reynolds number value for a cell in the mesh, h
is the average mesh size (along x or y), ρ is the fluid density,
vx(x, y) and vy(x, y) are the velocity components at the point
(x, y), and µ is the viscosity.

Finite element analysis software COMSOL Multiphysics
(COMSOL Inc., Burlington, MA) was used to solve the
Navier-Stokes equations for incompressible Newtonian lam-
inar flow with no slip boundary conditions:

ρ(U · ∇)U = ∇ · [−P + ν(∇U +∇UT )]− ρG, (7)

ρ∇ · U = 0, U = 0 at walls.

U denotes the velocity vector field (m·s−1), P is the pressure
(Pa), ρ is density (kg·m3) and ν is the dynamic viscosity (Pa·s).
The term ρ · G takes gravity into consideration, where G is
the gravitational acceleration (m·s−2). At the inlets, we set
U = Uin according to the input speed determined by the
algorithm. No viscous stress (P = P0) boundary condition
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Fig. 4. Timing diagram of NMR pulse sequence used for flow imaging.
Slice-selective (S.S.) three-dimensional phase-contrast velocimetry 2-D im-
ages are generated by repeating the sequence n times while stepping the
phase-encode (P.E.) gradient through the phase-encoding scheme. Bipolar
trapezoidal flow-weighting (F.W.) gradients were added along the x, y, and z
directions to select the gradient first moment (M1). Flow-compensation (F.C)
gradients are added along x and z directions. Additional abbreviations: S.S.
slice select gradient; R.O. read out (frequency encode) gradient.

was selected at the outlet. The velocity field is obtained by
solving the Navier-Stokes equation. Shear rate ς (s−1) is
then calculated as a function of the velocity field using finite
difference approximations of ς = (∇U+∇UT )/2. Shear stress
τ (Pa) is obtained by multiplying shear rate values with the
dynamic viscosity, i.e. τ = νς .

F. NMR shear rate measurement.

The pulse sequence for the NMR imaging experiment is
shown in Fig. 4. A standard spin-echo imaging experiment
with slice-select (S.S.), readout (R.O.), and phase-encode
(P.E.) gradients was modified to include phase-contrast ve-
locimetry as in refs. [20], [19]. To generate 2-D images, the
sequence is repeated n times while looping of the P.E. gra-
dient. Flow-compensation (F.C.) gradients were added along
all directions except the P.E. direction. Bipolar, trapezoidal
flow-weighting (F.W.) gradients are added along the x, y,
and z directions in order to select the gradient first mo-
ment M1. In the case of no flow, stationary nuclear spins
experience the positive and negative lobes of the bipolar
F.W. gradient with the same magnitude. For stationary spins,
the phase accumulation from the positive lobe is equal and
opposite to the phase accumulation from the negative lobe,
resulting in zero net phase accumulation. For moving spins,
phase cancellation is incomplete [18] and the residual phase
accumulation is proportional to velocity. Once we have a
velocity map acquired, the corresponding shear rate map can
be calculated by taking gradients of the velocity field, as
described in the previous section; see also [19]. In this work,
velocity measurements represent velocities averaged along the
z direction. Shear rate patterns were controlled along the x
and y directions.

III. RESULTS

To demonstrate the method’s ability to generate complex
patterns, several different shear-rate maps were produced
sequentially. Two examples of spatial patterns are shown in
Fig. 5. Fig. 5(a) shows a non-trivial pattern whereas Fig. 5(d)
shows a uniform pattern. CFD simulations of flows within
the scaffold of the bioreactor were performed and the results

are shown Fig. 5. The first simulation [see Fig. 5(a-c)] was
used to test the algorithm’s ability to find inlet flow speeds
in the case of a complex shear rate distribution. The pattern
consists of a non-linear gradient featuring low shear rates in
the lower right hand corner juxtaposed against a high shear rate
region located in the upper left hand corner [see Fig. 5(a,b)].
Along the path connecting these two corners, the shear rate
values range from 0 s−1 to 6 s−1. The convergence plot
[see Fig. 5(c)] demonstrates that the algorithm converged to
a reasonable solution in less than 25 iterations, and found an
accurate solution in less than 50 iterations.

The second simulation Fig. 5(d-f) was designed to test
the algorithm’s ability to adapt to changes over time. The
algorithm was required to find inlet flow speeds to generate
a uniform shear rate distribution (shown in Fig. 5(d)). The
target shear rate value was originally set to 10 s−1. After the
algorithm converged to a solution for the 10 s−1 value, the
algorithm was kept running until it reached 100 iterations.
At that point, the target shear rate value was changed to
11 s−1 and the convergence speed to the new value was
assessed. The convergence plot [see Fig. 5(f)] shows that the
algorithm quickly adapts to the new value [see Fig. 5(e)],
where only a small number of iterations were required to
find a new solution. Note that this ability to quickly adapt
to changes allows using crude approximations in training to
reduce computational requirements. Additionally, this simula-
tion also illustrates the algorithm’s ability to generate a highly
uniform shear rate distribution. It is generally difficult to create
a uniform shear rate distribution in a bioreactor with only
a single inlet; but with ten inlets excellent results could be
obtained. Shear rate values in the scaffold varied between
10 s−1 and 12 s−1, when the target value selected was 11 s−1.

In order to assess the algorithm’s performance in a dynamic
environment where scaffold properties are changing over time,
an experiment was conducted where the algorithm was trained
to achieve a target share rate map for the case where a grid
of circular obstacles with a 12.5 µm radius is present. The
obstacle radius was then gradually increased to 22.5 µm.
The response was assessed by observing the cost function
values at the iterations where the radius is increased, and the
current shear rate map before the change takes place. This
is illustrated in Fig. 6. The results confirm the algorithm’s
excellent adaptive abilities. Spikes in cost function values
corresponding to instances where structural change occurs
are characterized by small amplitudes and widths. The small
amplitudes indicate the flexibility of the bioreactor design,
where structural changes do not cause drastic changes in the
shear rate map. The small widths correspond to the small
number of iterations required by the algorithm to adapt and
readjust the shear rate map back to the desired target after it
had converged in its training phase. These results also validate
the use of a simplified CFD model in the training phase, in
order to reduce computational cost and training time.

Bioreactor biocompatibility was demonstrated by culturing
human aortic endothelial cells (HAECs) in endothelial cell
growth media (EGM-2 BulletKit, Lonza CC-3162) flowing at
4 mL/min total flow distributed uniformly at each individual
inlet. Two identical scaffolds were seeded with 2.2×106 cells



0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2537266, IEEE
Transactions on Biomedical Engineering

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 7

0 25 50
0

1

2

3(a) (b)

�  

n

(c)
6

4

2

0

6

4

2

0

s-1 s-1

(d) (e)

0 50 100 150
0

1

2

3

n

�

s-1

0

4

8

12

16s-1

0

4

8

12

16 (f)

Fig. 5. Inverse problem solved by multi-layer perceptron. Results from CFD simulations are shown: (a) Desired target shear pattern; (b) Outcome of
applying input flow speeds calculated to generate the pattern shown in (a), rounded to the nearest 0.05 mm/s from inlet #1 to inlet #10 are: [0.50, 0.45, 0.40,
0.15, 0.30, 0.40, 0.80, 1.40, 0.60, 1.20] mm/s, respectively; (c) Convergence plot with the y-axis corresponding to the cost function and x-axis corresponding
to iteration number; (d) Uniform shear rate pattern at 11 s−1; (e) Outcome of applying input flow speeds calculated by algorithm to generate the pattern
shown in (d), rounded to the nearest 0.05 mm/s from inlet #1 to inlet #10 were: [0.00, 0.05, 1.70, 1.95, 3.90, 2.75, 3.50, 0.05, 1.20, 0.00] mm/s, respectively;
(f) Convergence plot with y-axis corresponding to the cost function and x-axis corresponding to the iteration number.
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Fig. 6. Algorithm response to structural changes. The system was trained to produce the target shear rate map shown in (a) for the case where circular
obstacles shown in (f) are present. After 100 iterations the obstacle size was gradually increased every 25 iterations as shown in (g)-(j), and the corresponding
shear rate maps are shown in (b)-(e). (k) shows the cost function value (y-axis) at each iteration (x-axis), where spikes at iterations 101, 126, 151, and 176
correspond to the instances where structural change occurs.

and cultured statically at 37 ◦C and 5 % CO2 for 48 hours to
promote cell attachment to the scaffold. One scaffold was then
transferred to the bioreactor while the other remained static
in a tissue culture dish for control. Growth media flowing
into the bioreactor was warmed to 37 ◦C and sparged with
a 5 % CO2 gas mixture. The scaffolds were cultured for
an additional 48 hours in their respective conditions before
being fixed in a solution containing 2 % paraformaldehyde
(PFA). Following fixation the cells were stained for cell nuclei
(DAPI) and cytoskeleton (F-actin with phalloidin). Scaffolds
were then imaged with a confocal microscope with 15 µm
thick image sections. Imaging results show that cells cultured
in the bioreactor survived and proliferated. There were also
more cells in the scaffold cultured in the bioreactor compared
to static culturing, as evidenced by the number of blue nuclei

as well as associated red F-actin staining. Imaging results are
presented in Fig. 7. The shear rate map in the collagen scaffold
corresponding to the flow rate conditions under which cells
were cultured is shown in Fig. 8. This flow pattern was also
used with the cellulose scaffold (Fig. 9a,b).

Using our method, spatial distributions of shear rate values
within the scaffold region can be altered over time to generate
arbitrary patterns by merely changing inlet flow speeds. The
10-inlet bioreactor’s ability to dynamically generate versatile
and complex mechanical force distributions within a scaffold
is demonstrated in Fig. 9. Three different complex shear rate
distributions generated sequentially within the same scaffold
are shown. To evaluate the effectiveness of the approximations
made in training with our CFD model, maps obtained using
initial values obtained from simulations are compared with
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Fig. 7. Biocompatibility test (collagen scaffold). (a) & (b) Cell growth under
static condition. (c) & (d) Cell growth under flow. (a) & (c) Imaging results
for cell nuclei stain (DAPI). (b) & (d) Imaging results for cell cytoskeleton
(F-actin with phalloidin).

Fig. 8. Shear rate map in collagen scaffold. The shear rate map corre-
sponding to the flow under which cells were cultured in the collagen scaffold
was obtained using NMR velocimetry.

corresponding shear rate maps as measured experimentally
using the NMR velocimetry technique [18], [20], [19]. We
observe excellent agreement in the generated patterns between
theory and experiments. Using NMR feedback, the algorithm
can easily adapt to fine tune the moderate range variations due
to the adaptive properties demonstrated earlier in Fig. 5(d-f)
and Fig. 6.

IV. DISCUSSION

Tissue engineering studies of the effects of shear flows have
been hampered by the lack of suitable platforms to control
flow fields. Previous attempts at controlling mechanical forces
were limited to altering the scaffold structure and bioreactor
geometry. Most bioreactors used to date have been designed to
operate with a single inlet. Parameters such as perfusion rate,
flow, and mechanical stress are typically selected by trial-and-
error. Even then, due to many sources of variability, a protocol

that works to bring a particular construct to a desired stage may
likely fail to work for another construct [27]. Thus, the im-
portance of adaptive control with feedback. Given a feedback
mechanism, many possible solutions, e.g., single parameter
control, or a proportional-integral-derivative controller, may
exist for a single-inlet bioreactor. However, a single inlet does
not permit fine tuning of the flow field at the microscale, which
is an essential element for the study of cellular responses
to flow. Bioreactors with multiple inlets, such as the one
presented herein, reduce the need for engineering the scaffold
material properties, may alleviate manufacturing complexity
while enabling the creation of more accurate and complex flow
fields. Spatiotemporal control of mechanical force distributions
in scaffolds can be used to dynamically control the bioreactor
for applications in TE.

Because the relationship between shear maps and inlet
pressure is highly nonlinear, the task of finding a set of inlet
pressures to generate a desired flow pattern in a 10-inlets
bioreactor is a complex adaptive control problem possessing
no known analytical solutions. The adaptive control algorithm
presented herein solve the problem numerically. The algorithm
demonstrates high efficiency, as it converges to a solution
with a small number of iterations. Furthermore, it can learn
complex input/output relationships between inlet flow speeds
and mechanical force distributions, which gives it the ability
to quickly adapt to changes.

V. CONCLUSION

The concepts presented here are general and could be
applied to controlling any other force field, or the flow of
substances (e.g., nutrients, gases). Although not demonstrated
here, scaffold structure, bioreactor geometry and inlet positions
can easily be included as additional parameters to be optimized
along with inlet speeds. An interesting open question would
be to verify what shear rate distributions lead to tissue devel-
opment in a bioreactor scaffold beyond initial stages of cell
growth. A possible extension of this work to provide additional
control of the flow patterns would be to add multiple outlets
to the bioreactor; outlets add more degrees of freedom to the
problem where pressure can be released locally.
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