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Thrombosis and restenosis are the most prevalent late complications of coronary artery stenting. Current
standards of clinical care focus on prevention of smoothmuscle cell proliferation by the use of drug-eluting stents
able to release anti-proliferative drugs. Unfortunately, these drugs also block endothelial cell proliferation and, in
this manner, prevent recovery of endothelial cell coverage. Continued lack of endothelial repair leaves the root
cause of thrombosis and restenosis unchanged, creating a vicious cycle where drug-mediated prevention of re-
stenosis simultaneously implies promotion of thrombosis. In this issue of Vascular Pharmacology, Hussner and
colleagues provide in vitro evidence and amechanistic basis for the use of atorvastatin in stents as away to bypass
this roadblock. Here we review the pathological mechanisms and therapeutic approaches to restore flow in oc-
cluded arteries.We argue that rational design of drug eluting stents should focus on specific inhibition of smooth
muscle cell proliferation with concurrent stimulation of endothelial regeneration. We comment on the current
poor understanding of the cellular and molecular regulation of endothelial cell proliferation in the context of a
functional artery, and on the pitfalls of extrapolating from the well-studied process of neovascularization by
sprouting vessel formation.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Evolution has endowed vertebrate blood vessels with a fragile inner
lining that interfaceswith circulating blood [1]. This endothelial lining is
naturally protected from mechanical trauma because of its location.
However, endovascular balloon angioplasty and stent deployment
mechanically damage the lining. These procedures create areas of denu-
dation injury where stent struts, basement membrane, and/or vascular
smooth muscle cells are exposed to the blood [2]. Unlike the intact en-
dothelium, these surfaces do not offer an anti-thrombotic surface and
instead promote platelet binding, activation of the clotting cascade,
and thrombosis [3]. In addition to thrombosis, loss of endothelial signal-
ing and subsequent cytokine release by platelets and macrophages
stimulate the migration and proliferation of smooth muscle cells,
resulting in the formation of a neointimal layer that further occludes
the lumen and promotes stenosis of the involved vessel [4].

Balloon angioplasty, bare metal stents, and drug eluting stents have
been sequentially developed in an effort to prevent vessel restenosis
(Fig. 1). Drug eluting stents first approved in the early 2000s effectively
do so: they achieve local, non-specific inhibition of cell proliferation
and halt neointima formation. However, they exacerbate the pro-
thrombotic phenotype [5]. Research efforts in this area have resulted
in incremental improvements. These include changes in stent structure
and materials to reduce the inflammatory response, as well as the de-
velopment of drug derivatives with modified pharmacokinetics [6,7].
However, the root cause of both thrombosis and restenosis remains un-
addressed: poor regeneration of the endothelial lining.
2. Consequences of arterial denudation: Thrombosis and restenosis

Approximately one million coronary artery stents are placed in the
United States each year, dwarfing the incidence of all other sources of
denudation injury [8]. Typically a balloon-tipped catheter wrapped
with a collapsed stent is inserted through the skin into a peripheral ar-
tery, advanced retrograde to flow to the root of the aorta, and then to
the site of occlusion. While the coronary arteries are the major site of
stent deployment, other sites are also frequent. Vessels that are com-
mon targets for stent placement include the proximal carotid artery
and carotid bifurcation, the renal branches, and lower extremity arterial
bifurcations [8].

Current guidelines recommend aggressive balloon inflation to re-
store the artery to its full diameter (angioplasty) and ensure that stents
are completely expanded to be flush with the arterial wall [9]. Balloon
angioplasty alone is known to cause loss of the endothelial lining and
damage to the arterialmedia [10]; intuitively, stenting results in compa-
rable or more severe damage [11–14]. It is likely that additional undoc-
umented endothelial denudation injuries are created with high
incidence during the process of stent placement. In fact, studies in
Fig. 1. The evolution of angioplasty and stenting. Listed are the major deve
animal models have indicated that surgical clamping alone is sufficient
to cause loss of the endothelial layer [15,16]. Catheter contact with the
vessel wall is also sufficient to cause denudation, an underappreciated
source of endothelial injury [17]. In sum, physician-induced injury of
the coronary arteries during stent deployment is an extremely common
cause of endothelial lining loss. This loss creates clinical complications
without adequate solutions.

Currently, one of the most important late complications of denuda-
tion injury is thrombosis (Fig. 2). The causal link between denudation
and thrombosis is well established: thrombosis occurs upon platelet
activation due to exposure to non-endothelial surfaces and initiation
of the coagulation cascade [18]. Following stenting and accompanying
denudation injury, patients are at great risk for a thrombotic event lead-
ing tomyocardial infarct or death [3,19]. Currently, patients receive dual
anti-platelet therapy with aspirin and a platelet P2Y12 receptor antago-
nist designed to prevent thrombus formation [20]. Beyond the signifi-
cant morbidity and mortality risks associated with thrombosis (stroke,
infarct), the therapy to prevent thrombosis has additional shortcom-
ings. Illustrating these, a recent phase III trial found no upper bound
on the duration of benefit fromdual anti-platelet therapywhen patients
were followed to 30months, even when considering only the subgroup
whohad state of the art “second generation” stents placed [20]. Another
study found that thrombosis risk from implantation of sirolimus eluting
stents extends to at least five years [21]. The findings indicate that pa-
tients face a careful, prolonged balancing act between bleeding and
thrombosis risks, as well as an indefinite requirement for medication.

In addition to thrombosis, denudation injury frequently causes re-
stenosis. Evidence for a causal link between denudation and neointima
formation in humans is limited. However, animal models clearly show
correlation between the two [22,23]. The advent of anti-proliferative
drug eluting stents has reduced the incidence of restenosis to an esti-
mated 2–20% of stented patients from an estimated 30–40% when
using bare metal stents, depending on selection criteria [4]. In absolute
terms, restenosis remains prevalent due to the large population receiv-
ing interventions [4]— and it often necessitates a costly and dangerous
second vascular intervention [24].

In summary, stent placement is a common procedure which causes
denudation injury of the arterial wall. Thrombosis and restenosis are
natural consequences of endothelial denudation which continue to se-
verely impact human health. Next, we discuss the evidence that regen-
eration of the endothelial lining effectively prevents thrombosis and
restenosis.
3. Regeneration of the endothelial lining prevents thrombosis and
restenosis

Effective repair of the endothelial lining restores an anti-thrombotic
inner vessel surface and effectively inhibits thrombosis. At autopsy
lopments and clinical procedures applied to address arterial occlusion.



Fig 2. Biological responses following stent deployment. Bottom left: Drug eluting stents (DES) releasing sirolimus and derivatives inhibit smoothmuscle cell proliferation, but also prevent
reendothelialization. Lack of endothelial coverage results in thrombosis. Bottommiddle: Baremetal stents (BMS) elicit a reendothelialization response, but also induce smoothmuscle cell
proliferation leading to restenosis. Bottom right: Regeneration of the endothelial lining prevents thrombosis and inhibits smooth muscle proliferation.

11A.I. McDonald, M.L. Iruela-Arispe / Vascular Pharmacology 72 (2015) 9–15
[11–14] and in animalmodels [25], increased coverage of stent struts by
endothelium correlates with reduced rates of thrombotic events. In the
case where drug-eluting stents are used, and regeneration is inhibited,
increased rates of thrombosis are observed [11,26–29]. A causal rela-
tionship has been found in animal models. Experimental inhibition of
endothelial repair after denudation results in dramatically elevated
rates of thrombosis [30].

Evidence for the effect of endothelial lining repair on restenosis is
more limited, albeit still consistent. Gentle removal of the endothelial
layer was found to be sufficient to promote neointima formation [22].
Furthermore, denudation injury models with endothelial lining regen-
eration correlate closely with reduced or absent neointima formation
[31–33], and there is evidence that it may even cause regression [32].

The findings above prompted experiments to test whether endothe-
lial re-seeding at the site of injury would be beneficial and promote re-
pair of the intima. Unfortunately, the process is not simple. Attempts to
regenerate endothelial lining by seeding cells were found functionally
ineffective and still permissive of neointima formation [34]. Though
not demonstrated, it is likely that the newly seeded endothelium is
“dysfunctional” in the sense of being unable to release nitric oxide and
other anti-proliferative vasodilators [35]. Notably, such dysfunction
also appears to occur in humans at sites of stenting [36]. Therefore, re-
generation of a functional endothelial lining (as defined by flow-
mediated dilation) is likely to prevent restenosis, while a dysfunctional
endothelial lining remains permissive to neointima formation. Thus,
rapid and complete stent reendothelialization by proliferation of the en-
dothelium from the wounded margins, but not necessarily through
seeding would be expected to prevent restenosis.

4. Drug eluting stents: trading restenosis for thrombosis

The use of drug eluting stents creates a therapeutic trade-off: reste-
nosis is prevented by inhibition of smooth muscle cell proliferation, but
thrombosis is promoted by inhibition of endothelial cell proliferation
[5]. This is true even for state of the art “second generation” DES
which elute everolimus [37] or zotarolimus [38]. Sirolimus and its deriv-
atives act through disruption of themTORmetabolic sensor complex to
inhibit downstream Akt signaling, ultimately resulting in impaired cell
migration and cell cycle arrest in G1 [39]. Evidence for the effect of
DES implantation on endothelial lining regeneration is strong, in both
humans and animals. Autopsy evaluations suggest that lack of reendo-
thelialization is a common trait among thrombotic events occurring
out to five years poststent placement, and even beyond [11,13,14,21,
29]. Clinical follow-up of stented patients under prolonged dual anti-
platelet therapy suggests that endothelial lining regeneration was not
completed years after placement [20]. Even the slowest eluting stents
come to release an undetectable level of drug after sixmonths [40], sug-
gesting that thrombosis is the outcome of a permanent defect in
endothelial proliferation. In sum, while effective, drug eluting stents
designed to block cell proliferation result in uncovered thrombogenic
surfaces, leading to elevated and prolonged risk for clotting events.
5. Cellular and molecular mechanisms of endothelial lining
regeneration

At the cellular level, the biological response to stent-induced denu-
dation injury proceeds through defined stages [19,41] (Fig. 3). Acutely,
platelets adhere to the denuded vessel wall [42]. Provided that the me-
dial layer is injured [43], over the following days neutrophils andmono-
cytes infiltrate the arterialmedia [44–48]. Subsequently, and depending
on the presence or absence of pharmacological inhibition, the intact en-
dothelial border adjacent to the injury undergoes coordinated migra-
tion as a “front” of cells to begin covering the denuded area [32,33].
For unknown reasons, this migratory front stops at a certain point,
and the injury stabilizes with an area that remains uncovered by endo-
thelium (a “vascular ulcer”) [22,43] resulting in thrombosis, release of
PDGF and neointima formation.

The origin of the endothelial cells that form the regenerated lining
remains controversial. It has been attributed to circulating progenitor
cells (themselves controversial [49]), tissue resident stem or progenitor
cells [50], and simple proliferation of pre-existing differentiated endo-
thelial cells [33].

It is important to note that extent and characteristics of the injury
are dominant factors in determining the healing response. Usually,
lack of damage to the media results in complete regeneration of the en-
dothelial lining with minimal neointima formation [43]. Larger injuries
involving themedia, as typical of humans, often never achieve complete
endothelial coverage [21]. Moreover, human denudation injuries heal
more slowly than in animal models [42]. In animal models, a stent-
sized denudation injury heals in approximately one month [42]. In
humans, autopsy reveals a healing time of at least three months [51].
The reasons for slower healing kinetics in humans are not clear, but var-
iations in patient characteristics such as age and extent of atherosclerot-
ic plaque likely have a significant effect on the ability of the endothelial
layer to regenerate.

At the molecular level, the signals and pathways underlying endo-
thelial lining regeneration remain murky — though at least some



Fig. 3.Majormolecular signals driving endothelial lining regeneration and neointima formation following denudation injury. Leftmost: healthy endothelial lining suppresses smoothmus-
cle cell proliferation through release of nitric oxide (NO). Middle left: following denudation injury, damaged endothelial and smooth muscle cells release stored basic fibroblast growth
factor (FGF-2). Platelets adhere to the site of denudation and degranulate to release stored platelet derived growth factor (PDGF). Monocytes adhere and enter the vessel wall, where
they also secrete PDGF. Middle right: following acute injury, PDGF stimulation results in smooth muscle cell migration from the arterial media toward the lumen, forming a neointima.
FGF-2 stimulation results in theproliferation of both endothelial cells and smoothmuscle cells. Endothelial proliferation is frequently incomplete. Rightmost: depending on size anddegree
of medial damage, a functional endothelial lining may eventually regenerate and resume inhibition of smooth muscle cell proliferation via NO release.
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growth factors and other molecules with important roles in endothelial
lining regeneration have been identified (Fig. 3).

Basic fibroblast growth factor (FGF2) is an importantmitogen for both
endothelial cells and smooth muscle cells following denudation injury
[52]. In endothelial cells, FGF2 signaling occurs at the leading edge of lin-
ing regeneration [43]. In cases where regeneration is incomplete, FGF2
is absent from the border of existing lining [43]. Stimulation of incom-
pletely regenerated endothelial lining with FGF2 causes further mitotic
activity and extends lining coverage [53]. While in vivo data are lacking,
in vitro a gradient of FGF2 is sufficient to promote endothelial cell
migration [54]. In smoothmuscle, FGF2 signaling similarly results in in-
creased mitotic activity, leading to neointima formation [55]. Stimula-
tion with FGF2 results in increased neointima thickness [55].
Antibody-based inhibition results in reduced neointimal thickness due
to a decrease in vascular smooth muscle cell proliferation [56]. Further,
FGF2 has a role in at least vascular smooth muscle cell migration [57].
Antibody-based inhibition of FGF-2 signaling results in blockade of
smooth muscle cell proliferation [56]. Importantly, FGF-2 knockout
mice still form hyperplastic neointima following denudation injury
[58], proving that other, unknown factors are sufficient to cause this
pathology.

Platelet derived growth factor is a smoothmuscle cell specificmitogen
and migratory factor occurring in A and B isoforms. It is predominately
expressed as the PDGF-AB heterodimer by human platelets, and PDGF-
BB in most other cell types and species [59]. Sources of PDGF include
platelets [60], macrophages [61], and endothelial cells [62]. PDGF di-
mers are in turn detected primarily by PDGF receptors on smooth mus-
cle cells [63]. These receptors are upregulated in response to denudation
injury [63]. The migration of vascular smooth muscle cells from media
to intima is primarily driven by platelet derived growth factor B dimers
(PDGF-BB) [64–66]; antibody inhibition reduces neointima thickness by
preventing migration, but has no effect on proliferative indices [65].

5.1. VEGF-A

Despite its role as master regulator and potent endothelial cell mito-
gen during sprouting vessel formation [67], evidence for efficacy of
VEGF-A in stimulating endothelial lining repair is mixed [25,68–78].
Oneway to reconcile existingdata onVEGF-A effects in regenerating en-
dothelium is to consider the factor as effective only in combinationwith
other growth factors. There is good evidence that this is the case. FGF-2
causes upregulation of the transcription factor ATF-4, which in turn
controls transcription of VEGF-A. Thus, regulation of VEGF-A expression
occurs downstream of FGF-2 signaling in the arterial endothelial lining
— a marked contrast to angiogenesis, in which VEGF-A is the initiator
endothelial sprouting and proliferation [67]. VEGF-A and FGF-2 have a
synergistic effect on cellular proliferation in both endothelial and
smooth muscle cells [74,75]. The same is true of VEGF-A and PDGF-B.
In vivo, the two have a synergistic effect on cellular proliferation [70].
In vitro, PDGF treatment of smooth muscle cells results in VEGF-A ex-
pression, placing VEGF-A downstream of PDGF-B similar to its relation
to FGF-2, and again in contrast to sprouting angiogenesis [79,80].

5.2. Nitric oxide (NO)

A potent vasodilator produced by endothelial cells with extremely
short range paracrine action, nitric oxide effectively inhibits smooth
muscle cell proliferation in animal models of denudation injury [81].
One mechanism of this inhibition has been determined in an in vitro
co-culture system, namely that endothelial cell derived NO inhibits
the function of ornithine decarboxylase in smooth muscle cells [23],
preventing polyamine synthesis and cellular proliferation.

5.3. Other molecules

Additional molecular signaling pathways have been implicated in
regeneration of the endothelial lining, but we have chosen not to em-
phasize them in this review due to limited space and relatively weaker
evidence speaking to biological relevance. This is not to say that they are
unimportant. These factors include, but are not limited to, the TGF-β
family, estradiol, angiotensin, intermedin, the Notch receptor family
and its ligands, fibronectin and other extracellular matrix molecules,
and VE-cadherin/Wnt signaling.

5.4. Inhibition of endothelial repair

The reason(s) endothelial lining repair is often incomplete is un-
known. It is not, however, due to a limited replicative potential of endo-
thelial cells bordering the denudation injury: inhibition does not occur
in the absence of injury to themedial wall, even for large areas of denu-
dation [43]. An interesting study performed by Reidy suggests that
endothelial cell proliferation was not negatively regulated by factors
released by smooth muscle cells [82]. Additional studies are needed to
develop models that mimic arterial injury. These models will allow us to
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further understand the mechanisms behind endothelial regeneration
under flow conditions.

6. State of basic scientific research in endothelial repair

Information on how a functional blood vessel promotes repair
and regeneration of its endothelial lining is presently scant. Most of
the experimental data available were obtained in the 1980s and
1990s, before the widespread application of powerful transcriptome
analysis tools and transgenic animal models. A clear molecular and
mechanistic definition of the endothelial lining regeneration process
is overdue and key to both the development of therapeutics that spe-
cifically inhibit vascular smooth muscle cell proliferation as com-
pared with endothelial cells, and to agents which directly stimulate
endothelial cell proliferation and lining repair. Unbiased approaches
to identifying the molecular signaling pathways regulating endothe-
lial regeneration are now possible, and are likely to uncover addi-
tional important regulators. Context, however, is critical. In many
cases, knowledge from angiogenesis models is anticipated to directly
apply to a fully functional, pulsatile artery with flowing blood. The
differences between the invading front of a sprout and the inner lin-
ing of an injured aorta are broad and meaningful. New animal
models that can provide accurate molecular information are essen-
tial to make concrete advances in basic science to support this
unmet clinical need. Meanwhile, a few efforts with pre-clinical and
clinical models appear promising but information on basic biological
mechanisms is urgently needed.

7. Therapeutic promotion of endothelial lining regeneration

A number of attempts have been made to specifically inhibit vascu-
lar smooth muscle cell proliferation and promote endothelial lining re-
pair. Below we discuss the genetic and pharmacological approaches
undertaken in the last ten years.

7.1. Genetic

Tools for delivering recombinant DNA in vivo are still at the early
stages of pre-clinical development, but offer unprecedentedpower to reg-
ulate cell specificity and target particular molecular pathways. A recent
study provided proof-of-concept for the elegant technique of including
an endothelial-specific microRNA target sequence on the transcript of a
cell cycle blockade protein [30]. Using this approach, only non-
endothelial cells exhibited cell cycle arrest; while endothelial cells
showedquick degradation of the transcript. Cleverly, the authors used ex-
pression of the same cell cycle blockade protein upregulated by sirolimus
and its derivatives to achieve inhibition of cell cycle progression. In con-
cept, a similar specificity for endothelial cell proliferation driven by FGF-
2 could be achieved by viral transduction of a downstream proliferation
driver under the control of an endothelial specific promoter. Unfortunate-
ly genetic approaches, while powerful, represent major changes inmeth-
odology and involve significant obstacles, both technical and regulatory,
to bring to the clinic.

7.2. Statins

In this issue Hussner et al., report that specific statinsmay have differ-
ential uptake by smoothmuscle cells and endothelial cells, promoting dif-
ferential inhibition of proliferation. This represents an attractive strategy,
as existing drug eluting stents designsmight be adapted for statin elution,
or statins might even be given orally following stent deployment.
Cerivastatin eluting stents have been tested in animal models with mod-
erate success [83,84]. Hussner et al. report that OAT2B1 transportermedi-
ated uptake in vascular smooth muscle cells is specific to atorvastatin,
meriting further investigation for increased efficacy and vascular smooth
muscle specificity relative to cerivastatin in vivo.
7.3. Anti-CD34 antibody coated stents

Stents coatedwith an anti-CD34 antibody have been developed in an
attempt to capture circulating “endothelial progenitor cells” (EPCs) at
the site of stent placement [85–87]. However, in vivo animal model ev-
idence does not support the function of so-called EPCs as precursors to
endothelial cells [49,88]. Despite their adoption of an endothelial phe-
notype in culture, these cells appear to be lineage-restricted monocytes
which secrete multiple paracrine growth factors affecting endothelial
cells [89]. Whether these cells have favorable paracrine effect on endo-
thelial cells at the site of denudation injury remains to be determined.
Nonetheless, pre-clinical data from animalmodels are promising: reste-
nosis rates appear to be similar to first generation paclitaxel eluting
stents, and reendothelialization appears to be augmented [87].

8. Conclusions

Loss of the endothelial lining is at the root of thrombosis and reste-
nosis following stent deployment. Regeneration of the endothelial lin-
ing after denudation is possible in human and animal models, and
effectively prevents both complications. However, current stent designs
and a great deal of ongoing research neglect regeneration of the
endothelial lining as a therapeutic goal. Doing so limits progress to
only incremental improvements in patient outcomes. Therapeutically
promoting regeneration of the endothelial lining may be possible. Fur-
ther understanding of the cellular and molecular mechanisms driving
regeneration of the endothelium in adult arteries is likely to uncover
novel means of therapeutically stimulating endothelial growth.
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