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Acoustic communication involves both the gener-
ation and the detection of a signal. In the coqui
frog (Eleutherodactylus coqui ), it is known that
the spectral contents of its calls systematically
change with altitude above sea level. Here,
distortion product otoacoustic emissions are
used to assess the frequency range over which
the inner ear is sensitive. It is found that both
the spectral contents of the calls and the inner-
ear sensitivity change in a similar fashion along
an altitudinal gradient. As a result, the call fre-
quencies and the auditory tuning are closely
matched at all altitudes. We suggest that the ani-
mal’s body size determines the frequency
particulars of the call apparatus and the inner
ear.
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1. INTRODUCTION
The Puerto Rican treefrog, Eleutherodactylus coqui
(Anura: Leptodactylidae) is abundant in Puerto Rico
and can be found on this island at altitudes that
range from sea level to over 1000 m (Narins & Smith
1986). Male coqui frogs produce a characteristic
two-note call (‘Co-Qui’) for which it has been shown
that each note has different significance for each sex.
Males respond to the ‘Co’-note within the call, while
females are attracted to the ‘Qui’-note (Narins &
Capranica 1976, 1978). The frequency content of
these calls varies systematically with the altitude above
sea level at which the animal is calling (Narins &
Smith 1986).

Successful animal communication not only requires
the generation of a signal, but also the presence of an
‘appropriate’ sensor (Ryan 1986). For acoustic com-
munication, this means that the ear has to be
sensitive to those spectral (and temporal) cues present
in the calls; a correlation that is well established in frogs
(Gerhardt & Schwartz 2001). In frogs, as in most tet-
rapods, the inner ear produces so-called distortion
product otoacoustic emissions (DPOAEs). These are
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weak sounds that arise in response to a two-tone stimu-
lus, and can be recorded by placing a sensitive
microphone near the tympanic membrane. In frogs,
those frequencies that result in maximum DPOAE
amplitudes closely correspond to the frequencies of
highest inner-ear sensitivity (Van Dijk et al. 2002;
Meenderink et al. 2005b).

Here, we focus on communication between male
coqui frogs. We show that the dominant frequencies
in the relevant part of the calls (Co-note) and the fre-
quencies of the highest inner-ear sensitivity are closely
matched along an altitudinal gradient on a tropical
mountain. The similarities in these frequencies seem
to be determined by the animal’s size, and not under
the direct control of external factors (e.g. ambient
temperature).
2. MATERIAL AND METHODS
(a) Study site

This study was conducted during July 2006 in the Caribbean
National Forest in eastern Puerto Rico. Data were obtained along
a 13 km stretch of Puerto Rico Highway 191 that transects the north-
east face of the Luquillo Mountains up to El Yunque Peak. Data are
presented for 43 male E. coqui for which both calls and DPOAEs
were recorded. These are a subset of a larger group of animals for
which only the calls were recorded (Narins et al. in preparation).
The calling sites of these animals ranged from 30 to 1000 m above
sea level, spanning the entire altitudinal range at the study site.

(b) Data collection

For each individual, between five and 20 calls were recorded (TC
D5M; Sony) by holding a directional microphone (CE8; AKG) with
windscreen approximately 1 m from the animal. Following these
recordings, the animal was captured and brought to the El Verde
Field Station (altitude 350 m). The following day, the animal was
anaesthetized (Nembutal 50 mg ml21; approx. 1.1 ml g21 body
weight; intramuscular injection), and its body size was measured
from the tip of the nose to the cloaca (snout-vent length; SVL). A
probe, holding two drivers (E-A-RTONE 3A; Aearo) and one micro-
phone (ER-10A; Etymotic) was sealed against the skin surrounding
the tympanic membrane for DPOAE measurements. Two equal-
level (L1 ¼ L2 . 80 dB SPL) stimulus tones with appropriate absolute
( f1, f2) and relative ( f2/f1 � 1.1) frequencies were introduced into the
ear, each one from a single driver. Simultaneously with the stimulus,
ear-canal pressure was recorded, and stored on a computer hard
disk for offline analysis. During the recordings, the animal was
wrapped in wet gauze to prevent dehydration.

Details of the DPOAE recordings are described elsewhere
(Meenderink & Van Dijk 2004). Briefly, for each stimulus presen-
tation, the frequencies f1 and f2 were selected such that they were
periodic over the same number of samples. With this paradigm,
stimuli can be presented continuously, while allowing the separation
of the recorded signal into repetitive periodic ‘blocks’. Artefact-free
blocks were subaveraged in two buffers. From these, the amplitude
of DPOAEs at 2f12 f2 and 2f22 f1, as well as the noise floor, was
determined using Fourier analysis. As a control against distortion
in the setup, experiments were repeated with the animal replaced
by an inanimate object. These did not result in any observable distor-
tion. Therefore, DPOAEs were deemed of biological origin when
they exceeded the noise floor by at least 6 dB. A mobile processor
(RM2; Tucker-Davis Technologies; Fsample ¼ 12 kHz) that was con-
trolled by custom MATLAB (Mathworks) software was used for D/A
and A/D conversion. After recovery from anaesthesia, animals
were returned to their calling site within 24 h of their capture.

(c) Call analysis

Recorded calls were digitized (Audigy SE; Creative Labs; Fsample ¼
44 kHz), and for each call the dominant Co-note frequency
was determined (resolution ¼ 43 Hz) using the software package
SOUNDRULER (Gridi-Papp 2003). For each frog, all recorded calls
were analysed. The obtained values are given as their median and
interquartile (25–75%) range.

(d) DPOAE analysis

DPOAEs were recorded by varying stimulus frequency f1 between
0.3 and 3.2 kHz, while keeping the ratio f2/f1, and the stimulus levels
(L1, L2) constant. This yields so-called DPOAE audiograms—plots of
DPOAE amplitude versus frequency. From both ears in each animal,
This journal is q 2009 The Royal Society
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several DPOAE audiograms were obtained for different combi-
nations of the fixed-stimulus parameters. From each DPOAE
audiogram, the frequency that evoked the maximum DPOAE ampli-
tude (FmaxDP) was extracted. As these frequencies showed no
systematic variation within individuals, the obtained values are given
as their median+ interquartile range.
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Figure 1. (a) DPOAE audiograms showing 2f1– f2 ampli-
tudes for two animals caught at the altitude extremes in
this study. Stimulus parameters: f1 ¼ 0.3 . . . 3.2 kHz in
3. RESULTS
Two typical DPOAE audiograms, obtained from two
animals caught at different altitudes, are shown in
figure 1a. The stimulus frequencies that resulted in
maximum DPOAE amplitudes (FmaxDP) clearly differ
between the two audiograms. This is confirmed in
figure 1b, which shows FmaxDP versus altitude for all
animals.

For 2f 1– f2 DPOAEs, FmaxDP is given as the stimu-
lus frequency f1, while for the 2f2– f1 DPOAEs it is the
emission frequency itself. These different choices for
FmaxDP are motivated by previous observations in
frogs (e.g. Meenderink et al. 2005a), which showed
that these particular frequencies are the most stable
predictor for maxima in DPOAE audiograms. Given
that the difference between f1 and fDPOAE is small
(since fDPOAE ¼ 2f2– f1 ¼ f1(2 * f2/f12 1), where f2/
f1 � 1.1), this differential choice has little effect, but
represents the most accurate outcome.

Near the base of the mountain, one encounters
small coqui frogs that produce high-pitched calls at
high repetition rates. As one gains altitude while pro-
gressing up Luquillo Mountain the frogs
systematically increase in length. At the same time,
their calls exhibit a systematic drop in pitch and a con-
comitant reduction in call rate (Narins & Smith 1986).
These observations are formalized in figure 1c,d, which
show the animal’s SVL and the dominant Co-note
frequency in relation to the altitude above sea level at
which the animal was calling.

Data from figure 1b,d are plotted again in figure 2.
Dominant Co-note and FmaxDP show a clear corre-
lation. This indicates that the frequency sensitivity of
the ears and the frequency contents of the calls
covary, and are matched for any given altitude.
30 Hz steps; f2/f1 ¼ 1.1; L1 ¼ L2 ¼ 90 dB SPL. Downward
arrows indicate maxima in DPOAE audiograms. Filled cir-
cles, 30 m (PR57/b); filled squares, 1005 m (PR86/b).
Scatter plots showing (b) the frequencies resulting in maxi-

mum DPOAE amplitude (FmaxDP), (c) snout-vent length
(SVL) and (d) dominant Co-note frequency as a function
of altitude. Error bars give interquartile ranges. To avoid
overlap, data points were offset by small random numbers
along both abscissa and ordinate. (b) shows results for both

2f12 f2 (grey circles; n ¼ 43) and 2f22 f1 (black stars; n ¼
40) DPOAEs. The ordinate gives f1 for 2f12 f2 and
DPOAE frequency for 2f22 f1 (see text). Data were
fitted by straight (dashed) lines: (b) freq¼ 1.51 2 0.33*Alt,
r2¼ 0.589; (c) SVL¼ 29.23 þ 12.5*Alt, r2¼ 0.777;

(d) Co¼ 1.65 2 0.43*Alt, r2¼ 0.773.
4. DISCUSSION
DPOAE audiograms exhibited band-pass character-
istics; they have a single maximum, with frequencies
other than this maximum invariably resulting in
lower DPOAE amplitudes (figure 1a). This differs
from DPOAE audiograms recorded in several other
anurans, which are more or less ‘M-shaped’ with two
relative maxima (Van Dijk & Manley 2001; Vassilakis
et al. 2004; Meenderink et al. 2005a). This bimodal
shape results from DPOAE generation in both audi-
tory end organs in the frog (the amphibian papilla
and the basilar papilla; Lewis & Narins 1999), which
are most sensitive to different frequency ranges that
are not necessarily continuous. This results in an inter-
mediate frequency region with diminished DPOAEs.
The DPOAEs reported here most probably originated
from the amphibian papilla, which is sensitive up to
ca 1.5 kHz (Narins & Capranica 1976; Stiebler &
Narins 1990).
Biol. Lett. (2010)
Along the altitudinal gradient, the Co-note fre-
quency varies considerably (figure 1d; Narins &
Smith 1986). With this, two alternatives may be enter-
tained: (i) each animal’s ear is sensitive over a limited
frequency range, requiring a shift in frequency

http://rsbl.royalsocietypublishing.org/


1.3

1.7

F
m

ax
D

P 
(k

H
z)

0.9

1.9

1.1

1.5

1.71.5

Co-note frequency (kHz)

1.91.31.1

Figure 2. Scatter plot combining data from figures 1b,d
showing the relationship between the frequency at maximum
DPOAE amplitude (FmaxDP) and the dominant Co-note
frequency in the call. Points give median values+ interquar-
tile ranges. Grey circles, 2f12 f2; black stars, 2f22 f1.

To avoid overlap, data points were offset by small random
numbers along both abscissa and ordinate. The diagonal
(dashed) line indicates Co-note frequency FmaxDP.
Regression lines to the 2f12 f2 and 2f22 f1 data are given;
grey dashed line, 2f12 f2¼ 0.37þ0.69*Co, r2¼ 0.599;

black dashed line, 2f22 f1¼ 0.40þ0.65*Co, r2¼ 0.547.
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sensitivity with altitude that parallels the shift in call
frequency; and (ii) the frog ear has a broad sensitivity
range that allows detection of all call frequencies it
may encounter (irrespective of altitude). Our results
(figure 2) point towards the former strategy, a finding
that is supported by behavioural experiments (Narins
1983; Narins & Smith 1986).

Factors that caused the observed systematic gradi-
ents are likely to show a systematic dependence on
altitude as well. One candidate is ambient temperature,
which changes approximately 68C over the 1000 m
altitudinal gradient. In several ectothermic animals,
both the spectral content of calls and the tuning of
the ear vary with ambient temperature. However,
temperature-dependent shifts in call frequency (Ger-
hardt & Mudry 1986) and auditory tuning (Stiebler
& Narins 1990) are too small to explain the observed
gradients. Moreover, FmaxDP showed a clear depen-
dence on altitude (figure 1b), while DPOAE
recordings were all made at the same ambient tempera-
ture (range: 23.9–25.88C), and only after animals were
allowed to acclimate for several hours. Rather than this
external factor, we suggest that the observed gradients
result from a morphological factor (SVL), which also
varies systematically with altitude (figure 1c). The cor-
relation between body size and dominant call
frequency is well established in frogs (Ryan 1988),
and from our work it appears that hearing sensitivity
and body size are correlated as well. We are unaware
of previous reports on a similar dependence in auditory
Biol. Lett. (2010)
sensitivity. Presumably, this dependence on body size
is linked to corresponding size changes in the inner
ear. It is unknown whether and what morphological
variation occurs with varying body size (e.g. hair cell
morphology) and whether such variation can explain
the relationship between body size and hearing
sensitivity we observed.

The experimental protocol adhered to the ABS guidelines for
the use of animals in research and was approved by the UCLA
Animal Research Committee (protocol no. 094-086-51).
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