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Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different
viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the
validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model
predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical
view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view
generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition
performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition,
view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate
level objects, recognition performance was more accurate from non-canonical to canonical views than the other way
around. When the task was changed from object recognition to image recognition, the pattern of the results reversed.
Interestingly, participants responded ‘‘old’’ to ‘‘new’’ images of ‘‘old’’ objects with a substantially higher rate than to ‘‘new’’
objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are
incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored
independently.
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Introduction

Human visual recognition of natural objects appears
effortless. However, this apparent effortlessness is
deceptive, because the visual system has to solve a
difficult mapping problem in order to recognize an
object. The problem is difficult because a three-
dimensional (3D) object can give rise to a great number
of possible 2D images due to variations of the viewing
position, the illumination, and the scene surrounding
the object. Among these variations, viewpoint variation
is one of the most studied and most challenging,
probably because an object can appear drastically
different from one view to another, in part due to self-
occlusion; for reviews, see Tarr and Bülthoff (1995);
Logothetis and Sheinberg (1996); Ullman (1996);
Edelman (1998); Biederman (2000); Hayward (2003);
Kersten and Yuille (2003); Kersten, Mamassian, and
Yuille (2004); and Palmeri and Gauthier (2004).

In everyday life, self-occlusion of objects is unavoid-
able because surfaces of an opaque 3D object closer to
the observer will block light rays from farther surfaces.
Such occlusion leads to a situation where parts of the

object that are hidden from one viewpoint become
visible from a different viewpoint. This situation poses
a challenge for the recognition system to categorize the
two different images as belonging to the same object.
Object recognition theories propose various ways to
categorize an incoming image as belonging to a specific
category. In this study we summarized relevant theories
of object recognition, developed a hypothesis based on
the view-approximation model (Poggio & Edelman,
1990), observed human performance for viewpoint
generalization, and tested the validity of this model.

The exact nature of the internal representation of
objects in our visual system and the process of
recognition when an object is encountered from a
new viewpoint is an open question and a subject of
prolonged debate (Biederman & Gerhardstein, 1993;
Biederman & Gerhardstein, 1995; Tjan & Legge, 1998;
Tarr & Bülthoff, 1995). There are two sets of theories
to address this question.

Theory 1 The first theory hypothesizes that an object’s
3D structure is represented in a viewpoint
invariant manner, such that when a new view
is shown, the visual system in effect attempts
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to find the appropriate 2D projection from
this 3D structure in order to match the 2D
incoming image (Binford, 1971; Marr &
Nishihara, 1978).

There are three characteristics of this theory that are
noteworthy.

a. The theory proposed as such is an ideal
way to represent an object in memory.
That is to say, if we ignore the context in
which the representation is initially
learned and the specific recognition task
at hand, then fully encoding the 3D
structure of an object is the best way to
accomplish shape-based recognition of
the object (Grenander, 1993). It is an
empirical question however whether the
visual system is capable of accomplishing
this. For example, a variation of this
theory focuses on encoding qualitative
shape information while de-emphasizing
metric information. This allows the qual-
itative shape description to be valid within
a wide range of viewpoint variations
(Biederman, 1987; Lowe, 1987).

b. This theory does not take into consider-
ation how a representation is acquired,
and how the viewing history of an object
may influence recognition of the object.
To be fair, however, this is probably so
not because these factors were considered
unimportant, but because the theory is
primarily focused on what an established
representation in long-term memory ide-
ally should be. Nevertheless, if the view-
ing history is not considered, problems
may arise when testing this viewpoint
invariant theory. For example, a common
practice in experimentally testing this
theory is to first present an object from
viewpoint A. Subsequently, recognition is
tested when the object is shown either
from viewpoint A, or from a different
viewpoint B (Tarr, Williams, Hayward &
Gauthier, 1998). The hypothesis is that
comparable performance between A and
B supports the viewpoint invariant theo-
ry. Otherwise, it suggests that the repre-
sentation is viewpoint dependent. The
empirical results, across a large range of
tasks and stimuli, are that recognition
performance is better for viewpoint A
than for viewpoint B. However, it takes
time for the visual system to update the
representation with the recently acquired
information from viewpoint A. In other

words, the ‘‘propagation’’ of the new
information from a viewpoint specific
format into a less specific format is not
immediate. When these dynamics are
considered, disentangling the representa-
tion in longer-term memory becomes
complex. We also take issue with the
assumption that if the representation is
viewpoint invariant, recognition is neces-
sarily comparable between viewpoints A
and B. This will be elaborated below.

c. Although this theory emphasizes the
viewpoint independent nature of the
representation, it is possible to modify
the theory to allow the representation to
be viewpoint dependent, for the following
reason. There is an ecological advantage
to representing different viewpoints un-
equally; for example, a person is more
likely to be viewed at eye level than from
top down. Accordingly, it is sensible to
distribute representational accuracy dif-
ferently to better use limited resources.

Theory 2. The second set of theories proposes that the
memory representation is viewpoint depen-
dent, either because the visual system is
computationally incapable of building a
viewpoint invariant representation or be-
cause it is sensible to deliberately encode the
viewpoint from which an object was seen
(Poggio, 1990, Tarr & Bülthoff, 1998). A key
feature of these theories is that the repre-
sentation is a collection of previously seen
views of an object, but there is no attempt to
reconstruct its 3D structure. Specifically, the
fact that different views of a rigid object are
related is not represented (including, for
example, the fact that the object can be
rotated from one view to the next). In other
words, the constraint that different views
form into a geometrically consistent 3D
structure is missing.

We now use two examples to illustrate how an
incoming view may be matched to a set of 2D
previously seen views. The first example involves a
linear combination of some of the 2D images from the
stored set, and the second example involves no
combination at all. Assuming that an object’s view is
represented by the 2D coordinates of its features,
Ullman and Basri (1989, 1991) showed that any view of
an object is a linear combination of two other views of
the same object (the features are assumed visible from
all views). In other words, if a new view cannot be
represented by a linear combination of two views of an
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object, then this new view is not projected from this
object. Alternatively, in a view-approximation model
(Poggio & Edelman, 1990), the previously seen views
are stored independently in memory. When a new view
is seen, recognition is achieved by comparing a
similarity measure between this new view with each
stored view, and the summation of the total similarity
determines whether the new view is recognized or
rejected. Whether this new view can be expressed as a
linear combination of stored views is not considered.

How might these two sets of theories be tested
empirically? During the prolonged debate in the past
three decades, scientists have focused on the following
criterion in regard to whether the internal representa-
tion is viewpoint dependent or independent (Binford,
1971; Marr & Nishihara, 1978; Biederman, 1987; Tarr
& Pinker, 1989; Bülthoff & Edelman, 1992; Edelman &
Bülthoff, 1992); see also Riesenhuber and Poggio (1999,
2000) and Hayward (2003) for a review. If recognition
performance (measured in accuracy or speed) varies as
a function of viewpoint, then the representation is
viewpoint dependent. This assumption, commonly held
by all in the debate, is mistaken, however, because
object recognition necessarily requires matching be-
tween an incoming view with the object’s internal
representation (Marr, 1982; Liu, 1996; Liu, Knill &
Kersten, 1995). Therefore, even if the representation is
viewpoint invariant and all viewpoints are assumed
equally likely, a more informative view should in theory
give rise to better recognition performance than a less
informative view. The well-known accidental view
effect illustrates this point. For example, the observa-
tion that a bucket is hard to recognize from the top-
down view (Warrington & Taylor, 1973) may be
attributed to the impoverished stimulus information,
even if the representation is viewpoint invariant. The
well-known canonical view effect illustrates the point
from the opposite end (Palmer, Rosch & Chase, 1981;
Blanz, Tarr, Bülthoff, & Vetter, 1999).

A canonical view is an image of an object that is the
most representative, comes to mind first when associ-
ating a name, and gives rise to the most accurate and
fastest recognition performance. For example, a three-
quarter view of a horse is a canonical view of a horse.
Since the original discovery of canonical views by
Palmer et al. (1981), a large number of studies have
confirmed that canonical views indeed gave rise to
superior recognition performance relative to non-
canonical views (Perrett & Harries, 1988; Harries,
Perrett, & Lavender, 1991; Edelman & Bülthoff, 1992;
Perrett, Harries, & Looker, 1992; Cutzu & Edelman,
1994; Bulthoff, Edelman, & Tarr, 1995; Verfaillie &
Boutsen, 1995; Newell, Ernst, Tjan, & Bülthoff, 2001).
This finding led to the hypothesis that canonical views
were encoded into a viewpoint-dependent representa-
tion. However, this conjecture is premature because, as

argued above, the superior performance can be
attributed to the representation only if a canonical
and a non-canonical view are assumed to be equally
informative. Gomez, Shutter, and Rouder (2008) made
exactly this assumption that canonical and non-canon-
ical views were equally informative and that the canonical
view effect was due to viewing frequency. They further
conjectured, based on their empirical results, that the
canonical view effect was analogous to the word
frequency effect in word memory tests. Essentially,
they argued that canonical view effects could be
completely accounted for by the possibility that a
canonical view of an object is more frequently seen
than a non-canonical view. However, in this study we
will argue for an alternative perspective.

As explained above, behavioral performance on
object recognition tasks is dependent on both internal
representation and the information content of the
incoming view. It should now be apparent that,
although the canonical view effects are well accepted
and robust, inferring the nature of the internal object
representation from these effects is difficult. In this
study, we set out to test a specific version of the second
set of theories about the internal representation of
objects: the view-approximation model by Poggio and
Edelman (1990).

The view-approximation model

A specific and prominent viewpoint dependent
theory in object recognition is termed view-approxima-
tion model (Poggio, 1990; Poggio & Edelman, 1990;
Edelman & Poggio, 1992). Although there are several
variations of the model, its central theme is that the
representation R of an object is a set of previously seen
views Vi: where R¼ {Vi, i¼ 1. . . n}. When an object is
seen, its input view V is compared with each stored
‘‘view’’ Vi to yield a similarity measure s(V, Vi). A
summation of these pair-wise similarities gives rise to
an overall measure of similarity s(V, R) ¼

P
i s(V, Vi).

Consequently, the input object is either recognized as
the same, or ‘‘old,’’ object represented by R if the
overall similarity is above a certain threshold; or
otherwise rejected as a different, or ‘‘new,’’ object.

We now use the classic results on canonical views to
make a prediction from the model above, a prediction
that has never been discussed in the literature, as far as
we know. The classic results claim that a canonical view
gives rise to more accurate object recognition than a
non-canonical view. Accordingly, a straightforward
prediction from the model above is as follows. We first
assumed that, after seeing a view V of an object, the
object representation R is updated to be V ¨ R the
prediction is: if an object is first studied from a
canonical view Vcc and then tested from a non-
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canonical view Vnc, recognition performance for the
most recent view will be worse than if the view sequence
is reversed. Namely,

sðVnc;Vcc ¨RÞ � sðVcc;Vnc ¨RÞ
¼ sðVnc;RÞ � sðVcc;RÞ, 0: ð1Þ

Note that this inequality holds irrespective of how the
similarity s(�) is defined.

Our justification for using the union of Vcc and R as
the updated representation after viewing Vcc is that
even for a canonical view Vcc, this exact view from this
exact synthetic object is unlikely to have been seen by
participants. This relationship is consistent with the
model proposed by Poggio and Edelman (1990).
Namely, even if a canonical view has been seen before,
adding it again to the representation R is equivalent to
increasing the coefficient from this view to the
cumulative similarity measure.

Equation 1 also holds in the following two scenarios
that are particularly relevant to the experiments in this
paper:

1) Scenario 1: the similarity comparison takes into
consideration all stored views, as Equation 1
indicates. This consideration is in a situation when
an object needs to be recognized regardless of its
viewpoint (that is, in an object-recognition task).
Then according to Bayesian inference (Knill &
Richards, 1996), all stored views should be consid-
ered. This integration can be further generalized.
For example, the stored views do not have to be
equally weighted. The views that are more informa-
tive or more frequently seen can be weighted more.
These generalizations, however, do not change the
inequality in Equation 1.

2) Scenario 2: the similarity comparison does not take
into consideration all stored views. Instead, a
nearest neighbor operation, which considers only
one stored view that best matches the input view,
may be used. This operation may be a reasonable
alternative when both an object and its original
viewpoint need to be identified: for example, in
situations where one may need to perform image
recognition task, that is, whether the exact image of
a given object had been seen before. The question
now is whether Equation 1 would still hold.

In order for Equation 1 to hold, the stored view in
the representation that is closest to the canonical view
needs to give rise to a higher similarity than its non-
canonical counterpart. The following two possibilities
suggest that Equation 1 still holds.

2.1) The first possibility is that the distribution of
viewpoints across the viewing sphere is non-
uniform, such that canonical views are more
likely to be stored than non-canonical views.

For example, a top-down view of a human is
less likely than views from the sides. In this case,
as Gomez et al. (2008) argued, based on mere
frequency of occurrence, on the viewing sphere
a stored view is likely to be closer to the
canonical than to the non-canonical view.

2.2) The second possibility is that the nearest stored
view is likely to be more similar to a canonical
than to a non-canonical incoming view, even if
the viewpoint distribution over the viewing
sphere is uniform. This is because views that
are qualitatively similar are clustered over the
viewing sphere (Koenderink & van Doorn,
1976). As an example, imagine the viewing
sphere of a cube in parallel projection. The
image of a cube shows either one, two, or three
sides of the cube, with increasing surface cluster
area on the viewing sphere. If one accepts the
assumption that a canonical view of a cube has
three, but not one or two, sides visible, then a
randomly selected view on the viewing sphere is
more likely to be more similar to a canonical
than to a non-canonical view.

Weinshall and Werman (1997) provided further
mathematical support to this possibility, although it
remains an open question whether their mathematically
defined ‘‘typical,’’ ‘‘characteristic,’’ or ’’generic’’ views
are synonymous to the psychological canonical views.
It should also be noted that Weinshall and Werman
(1997) used generic notions of similarity. In fact, if
views are assumed to be independently stored, then
Weinshall and Werman (1997) also predict Equation 1
in Scenario 1. No prediction can be deduced from
Weinshall and Werman (1997), however, if views are
not assumed to be stored independently.

Another important yet unresolved question is how
the representation of an object is updated. What we
assumed here is perhaps one of the simplest postula-
tions that follows from Poggio and Edelman (1990): for
Equation 1, the assumption is that the new view in the
study phase changes the representation of the object in
the following sense. Denoting the new view as Vn and
the representation as R, then the changed representa-
tion is Vn ¨ R. Namely, Vn is added as an additional
item to the set of stored views represented as R. This
assumption is made by the following equation in
Poggio and Edelman (1990):

fðxÞ ¼
XK
a¼1

caGðjjx� tajjÞ;

where ta (a ¼ 1, . . . , K) is a stored view, x is an input
view, and G is a radial basis function (or a Gaussian in
the implementation), ca is the coefficient, and f (x) is a
measure of the overall similarity between the input x
and the object represented by ta (a¼ 1, . . . , K). There is
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no principled way to determine the coefficient ca, which
is assumed to be independent of a when all views are
treated equally. Apparently, all views are stored
independently of each other and contribute indepen-
dently to the overall similarity measure.

A modern relevance of this assumption is illustrated
in Edelman and Shahbazi (2012)

CTðxÞ ¼ 1ffiffiffi
n
p

jjx� p1jj
..
.

jjx� pnjj

0
B@

1
CA:

Aside from the notation changes, it is apparent that the
independent assumption of the stored ‘‘prototypes’’
and their role in contributing to the overall similarity is
fundamentally the same as in Poggio and Edelman
(1990).

To summarize, we used the canonical view effect as a
foundation to investigate the validity of a major theory
in object recognition, the view-approximation model.
We compared situations where a familiar object was
first studied from a canonical view, and then tested
from a non-canonical; and vice versa. We manipulated
the recognition task such that the required recognition
was either viewpoint irrelevant (Scenario 1) or relevant
(Scenario 2). The arguments above predicted that
Equation 1 would hold in both tasks, if views were
assumed to be stored independently. In order to
increase the power of our hypothesis testing, we
parametrically manipulated our experiments by testing
object recognition either in the basic level category or in
the subordinate level category (Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976). For example, ‘‘bird’’
would be a basic level categorization and ‘‘robin,’’
‘‘sparrow,’’ ‘‘jays,’’ and ‘‘crows’’ would be exemplars
that belong to the subordinate level of categorization.
By extension, we expected the differential effect as
calculated in Equation 1 to be more pronounced when
the task was changed from between-category (e.g., a
cow vs. a car) to within-category object recognition
(e.g., a BMW vs. a Mercedes). Our rationale was that,
when within-category distractors were added, addition-
al view-specific shape details would be required for
successful object recognition. At the same time,
Equation 1 was expected to hold in all four conditions:
(basic level, subordinate level) · (view irrelevant, view
relevant recognition). We tested this pattern of
predictions.

To anticipate the results, we found that Equation 1
held only in certain experimental conditions, but was
violated in other conditions. These findings contradicted
the view-approximation theory that predicted that
Equation 1 should hold in all conditions. Our results
argued against the hypothesis that views are stored
independently. In what follows, we will present three
experiments. Experiment 1 served to validate that our

choice of a canonical view was more representative of an
object than the non-canonical view. Experiment 2
studied viewpoint irrelevant object recognition (Scenario
1) in basic and subordinate level categories, and the
results were consistent with Equation 1. Experiment 3
was nearly identical to Experiment 2, except viewpoint
relevant image recognition (Scenario 2) was studied, and
the results were inconsistent with Equation 1.

Experiments

Experiment 1: Goodness-of-view rating

Palmer et al. (1981) used a set of preselected images
of an object from different viewpoints and defined the
canonical image as the one that was preferred over
other images by participants. Using a similar paradigm,
we preselected two images per object to verify that the
canonical and non-canonical views chosen by the
experimenters were agreed upon by naı̈ve participants.

Stimuli

Author TG chose a canonical (CC) and a non-
canonical view (NC) from each of 144 computer
graphics 3D objects. These images are available at this
website: ,http://www.sowi.uni-kl.de/fileadmin/wpsy/
public/MOR/CNC.htm.. For most of the objects the
canonical and non-canonical views differed by approx-
imately 45 degrees in rotation around the y-axis. A
canonical view was chosen such that many of the
distinctive features of an object were visible. The non-
canonical view was selected by rotating the object away
from the canonical view such that at least one of the
distinctive features (for example, a corner or a limb)
became occluded. Among the 144 objects, 108 were basic
level and 36 were subordinate level objects (12 cars, 12
dinosaurs, and 12 airplanes). The 36 subordinate level
objects and 36 of the 108 basic level objects were from
the Inventor object database (Silicon Graphics, Inc.,
Mountain View, California, version 2.0, 1992). The
remaining 72 basic level objects were from the Tarr
object database (http://www.tarrlab.org/). The images
were grayscale, and rendered under orthographic
projection with Lambertian shading. Figure 1 shows
some example objects.

Apparatus

Stimuli were presented in a dark room on a 16 0 0

calibrated computer monitor (Mitsubishi Diamond
Plus 73) with a refresh rate at 85 Hz, and a resolution
of 1024 · 768 pixels. The size of each image was 450 ·
450 pixels, subtending a 148 · 148 visual angle at a
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viewing distance of 57 cm. The experimental program
was written in MatLab and Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997).

Procedure

Two preselected images of the same object, rendered
from two different viewpoints, were shown side by side
for up to 5 s of viewing time, with their relative
positions randomized. Participants decided which view
was more representative of the object, by a mouse-click.
After the response, the images were replaced by
uniform gray. The participant pressed a mouse key to
start the next trial.

Participants

Thirty-two undergraduate students of the University
of California Los Angeles (UCLA) participated for
course credits. All participants had normal or correct-
ed-to-normal visual acuity, and were naı̈ve to the
purpose of the experiment.

Results

The canonical views were chosen 69.15% of the time
as the more representative view, significantly higher
than the 50% chance level (t(31) ¼ 10.72, p , 0.0001)
(Figure 1). This percentage was further broken down
by object categories as follows: cars, 84.38%, t(31) ¼
9.86, p , 0.0001; dinosaurs, 73.44%, t(31)¼ 6.94, p ,
0.0001; airplanes, 78.65%, t(31) ¼ 8.46, p , 0.0001;
miscellaneous items from the SGI Inventor database,
74.91%, t(31) ¼ 9.27, p , 0.0001; and miscellaneous
items from the Tarr object database, 62.72%, t(31) ¼
4.90, p , 0.0001. These results indicate that there was
good consensus among participants that the canonical
views chosen by the experimenter were more represen-
tative of the objects than were their non-canonical
counterparts.

Experiment 2: Viewpoint irrelevant
recognition of 3D objects

In this experiment participants performed an object-
recognition task when objects were studied either from
a canonical (CC) or a non-canonical view (NC) and
then tested with a matched or mismatched view. This
was done for both basic level and subordinate level
objects.

Stimuli

The stimuli were the same images of the 144 objects
in Experiment 1.

Procedure

The experiment was an old-new rating study often
used in memory research. There were two blocks,
counter-balanced across participants. One block had
only basic level objects, and the other block had
subordinate level objects (12 cars, 12 dinosaurs, and 12
airplanes). Each block had two phases: study and test
(Figure 2).

In the basic level block, the 108 objects were
randomly divided into two halves. One half, consisting
of 54 objects, was called ‘‘old’’ and was shown in the
study, with half of them in canonical views (CC) and
the other half in non-canonical views (NC). In the test,
half of the ‘‘old’’ objects were shown identically as in
the study. The other half’s viewpoints were changed
between canonical and non-canonical. The 54 ‘‘new’’

Figure 1. Experiment 1: Goodness-of-view rating. The purpose of

this experiment was to see whether the view chosen as

‘‘canonical’’ by the experimenter was indeed preferred as a

‘‘better’’ view as compared to the non-canonical view of the same

object. The participants chose the canonical as the better view

significantly more often than at chance (the red-dashed line), for

all classes of objects used. At the bottom are examples of

canonical and non-canonical images of some objects.
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objects were shown only in the test phase, half of which
were in canonical and the other half in non-canonical
views. In the subordinate level block, the same
procedure was followed, and half objects in each
category (cars, dinosaurs, and planes) were ‘‘old’’ and
half were ‘‘new.’’

More specifically, in the study phase, an object image
was shown for 1 s and was replaced by a scale of (�3�2
�1þ1þ2þ3). The following words were written below
their corresponding numbers in the scale: (least
attractive, �3), (below average, �1), (above average,
þ1), and (most attractive, þ3). Participants responded

by selecting a number, and the next trial started
automatically. The subordinate level block was preced-
ed by a reminder that there was a high degree of
resemblance between some objects and that care was
needed to do well. Each subordinate level object was
shown twice in the study, as compared to the basic level
block where each studied object was shown only once.

In the test phase, an object image was shown for 1 s,
and was replaced by a scale of (�3�2�1þ1þ2þ3). For
half of the participants, the following words were
written below their corresponding numbers in the scale:
(‘‘surely old,’’�3), (‘‘guess old,’’�1), (‘‘guess new,’’þ1),
and (‘‘surely new,’’þ3). For the remaining participants,
the old-new direction was reversed. Participants re-
sponded by selecting a number, and the next trial
started automatically. It is important to emphasize that
no object was retested.

The old-new assignment of objects, the viewpoint
(CC or NC) chosen, and whether an image or its mirror
reflection was shown, were all randomized across
participants. For any participant, an ‘‘old’’ object’s
study-test image pairs were either both mirror reflected
or both not reflected. In other words, no participant
had to consider that an image was mirror reflected.

It took about 20 minutes for a participant to
complete the experiment.

Participants

Fifty-seven fresh UCLA undergraduate students
were recruited similarly as in Experiment 1.

Results

The canonical views, in the study phase, were overall
rated as more attractive than non-canonical views. In
the basic level block, the mean ratings were 0.23 and
0.09, respectively (t(56) ¼ 2.22, p ¼ 0.03). In the
subordinate block, no difference could be found (t ,
1).

The data in the test phase are here reported as the
frequency an object was categorized as ‘‘old.’’ For
studied objects, this ‘‘old’’ response is the hit rate
(Figure 3). For ‘‘new’’ objects, this ‘‘old’’ response is the
false alarm rate (Figure 4). Our analysis of d’ data gave
rise to similar results as the analysis using hit and false
alarm rates.

We categorized the rating data by positioning the
decision criterion between �1 and þ1, and calculated
the hit and false alarm rate per participant, per block
(basic vs. subordinate), per study view (canonical vs.
non-canonical), and per test view (matched/same as vs.
mismatched/different from the study view). First, an
overall 2 · 2 · 2 ANOVA was performed on the hit
data. The main effect of block was significant, F(1, 56)
¼ 13.86, p , 0.001, where the overall hit rate for the

Figure 2. Experiments 2 and 3: Basic (108 objects) and

subordinate level objects (12 cars, 12 dinosaurs, and 12

airplanes) were run in two separate blocks. Within each block a

study phase with attractiveness rating task was followed by a test

phase with old-new memory rating task. The memory rating task

was on viewpoint-irrelevant objects (Experiment 2) or on

viewpoint specific images (Experiment 3). In the study phase,

an object was shown either in its canonical or non-canonical view.

Subjects rated its attractiveness. In the test phase, either an ‘‘old’’

object was shown either in same/matched or different/mis-

matched view. An equal number of ‘‘new’’ objects were shown

in either canonical or non-canonical view. No object was tested

twice.
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basic level block (89.09%) was higher than for the
subordinate level (83.95%) block, not surprisingly. The
main effect of test view was also significant, F(1, 56)¼
72.26, p , 0.001, meaning that the overall hit rate was
higher when study-test views matched than mismatched
(92.97% vs. 80.07%). The main effect of study view
was not significant, F(1, 56) , 1. There was a
significant interaction between block and study view,
F(1, 56)¼ 5.38, p , 0.05, between block and test view,
F(1, 56)¼ 24.09, p , 0.001, and between study and test
views, F(1, 56) ¼ 4.17, p , 0.05. The three-way
interaction was also significant, F(1, 56) ¼ 8.19, p ,

0.01.
In order to better understand the overall effects

above, we looked at the data more closely. The hit rates
were similar when the study and test views matched, for
both the basic and subordinate level objects (study-
view_test-view: NC_NC¼ 92.15%, CC_CC¼ 93.79%).
The similar hit rates show that interestingly, the
presence of within category distractors did not influ-
ence recognition when viewpoints were unchanged

from study to test. No significant difference between
the NC_NC and CC_CC conditions was found in
either block (t(56) ¼ 1.16 and 0.91, p ¼ 0.25 and 0.36,
for subordinate and basic levels, respectively).

These results are different from those in Gomez et al.
(2008) who found that non-canonical matched views
gave rise to a higher hit rate than did canonical
matched views (84.80 vs. 78.90%, as compared to
92.15% vs. 93.79% in our study). The false alarm
results are also different between the two studies. In
Gomez et al. (2008), ‘‘new’’ objects tested in canonical
views gave rise to a higher false alarm rate (18.20%)
than in non-canonical views (10.80%). In our study,
however, the main effect of ‘‘new’’ objects’ view
(canonical vs. non-canonical) was not significant in

Figure 3. Experiment 2: Stimulus examples and the hit rates for

the basic and subordinate blocks. In the basic level block, view

generalization from matched to mismatched views was compa-

rable, for canonical and non-canonical study views alike. In the

subordinate block, interestingly, view generalization was better

when non-canonical rather than canonical views were studied.

Figure 4. Comparison between viewpoint irrelevant (left, Exper-

iment 2) and viewpoint relevant (right, Experiment 3) tasks. The

green lines show false alarm rates for ‘‘new’’ objects. For the

‘‘old’’ objects, the ‘‘old’’ responses to a different view are lower in

Experiment 3 than in Experiment 2, indicating that the participants

followed experimental instructions to a certain degree. However,

these ‘‘old’’ responses are higher than the false alarm rates for

the ‘‘new’’ objects, implying automatic generalization from a study

view to a different view. In Experiment 3 and for basic level

objects, fewer false alarms were made when the objects were

studied in non-canonical view and tested in a canonical view than

the other way around. For subordinate level objects, the false

alarms were similar for both canonical and non-canonical study

views, indicating that when image-based details were made

important by the task, the significant difference observed in

Experiment 2 disappeared.
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either block (basic level: 11.26% vs. 10.54%, t(56) , 1;
subordinate level: 30.63% vs. 26.69%, t(56)¼ 1.40, p¼
0.15) (Figure 4). It is likely that these different results
between the two studies are due to the different objects
used, and the different canonical and non-canonical
views selected. In a sense, the comparable performance
between canonical and non-canonical matched condi-
tions (when study-test views were identical) in our
study made it easier and more interesting to interpret
mismatched conditions below (when study-test views
were different) for evaluating the predictions made by
Equation 1. This is because any asymmetry of view
generalization between canonical and non-canonical
views is more likely due to the view generalization from
one view to another, rather than the views themselves
(Figure 3; see Discussion).

In order to test whether there was any such
asymmetry, a 2 · 2 ANOVA on study (canonical,
non-canonical) · test (matched, mismatched) views was
performed in the basic level block. There was a main
effect of test view, F(1, 56) ¼ 32.38, p , 0.001. This
means that the hit rate was higher when the study-test
views matched than mismatched (NC study views:
91.84% (matched) vs. 84.41% (mismatched), CC study
views: 92.93% vs. 87.18%). The main effect for study
view was not significant, F(1, 56) ¼ 2.96, p ¼ 0.09,
indicating that the hit rate was similar for CC (88.67%)
and NC (88.50%) study views. The interaction was not
significant, F(1, 56) , 1. This means that the perfor-
mance drop from matched study-test views to mis-
matched ones was comparable regardless of view
canonicality.

In comparison, the similar 2 · 2 ANOVA for the
subordinate level block showed the following results.
There was a main effect for test views, F(1, 56)¼ 56.19,
p , 0.001. This again means that the hit rate was higher
when the study-test views matched than when they
mismatched (NC: 92.46% (matched) vs. 78.25%
(mismatched), CC: 94.65% vs. 70.44%) (Figure 3).
The main effect for study views was not significant,
F(1, 56)¼ 2.56, p¼ 0.12, indicating that comparable hit
rates were obtained regardless of the study view
canonicality (NC: 85.35%, CC: 82.54%). Interestingly,
there was a significant interaction between study and
test views, F(1, 56)¼ 7.32, p , 0.01. This indicates that
performance was better when a non-canonical view was
studied and its canonical counterpart tested than the
other way around. More specifically, the drop in hit
rate from matched to mismatched views was significant
for both NC and CC study views, p , 0.001 (CC:
24.21% drop, t(56) ¼ 7.65; NC: 14.21% drop, t(56) ¼
4.51). This 10% additional drop for the CC study views
indicates that, in presence of within-category objects
that required additional shape details of an object to be
encoded, view generalization from a non-canonical

study view to a canonical test view was more accurate
than the other way around.

The results from the subordinate level block of this
experiment, taken in isolation, were consistent with the
prediction from Equation 1. However, Equation 1 also
predicts the similar pattern of results for basic level
objects as well as when 3D object recognition is
switched to 2D image recognition. Poggio & Edelman’s
model operates by matching incoming 2D images with
stored 2D views. By the virtue of 2D image matching,
the model attempts to find the most likely object and
viewpoint that gave rise to the 2D image. Therefore,
one would expect Equation 1 to make the same
qualitative prediction for an image-based recognition
task as explained under Scenario 2 in the Introduction.
Experiment 3 tested this prediction.

Experiment 3: Viewpoint relevant recognition
of 2D images

The results from the previous experiment showed
that the degree of view generalization between canon-
ical and non-canonical views was asymmetric, when
detailed shape information was important for recog-
nizing objects with within-category distractors. The
goal of Experiment 3 was to check whether the
asymmetric view generalization between canonical
and non-canonical views held, as predicted by Poggio
and Edelman (1990), when object recognition was
changed to image recognition. Here, participants were
instructed to remember the exact view of a study object.
In the test phase, the task was to respond ‘‘old’’ only if
the image was exactly the same as in the study phase
(i.e., the object was being tested from the same
viewpoint as it was seen in the study phase), and to
respond ‘‘new’’ otherwise. The design of the experiment
was otherwise identical to Experiment 2.

Participants and apparatus

Twenty fresh students of UCLA participated for
partial course credit in undergraduate psychology
courses. Thirty-seven students of the Technical Uni-
versity of Kaiserslautern, Germany, also participated
and were paid for their time. All participants had
normal or corrected-to-normal vision, were naive to the
purpose of the experiment, and gave informed consent
in accord with the policies of the Committee for the
Protection of Human Subjects, which approved the
experimental protocol at the respective universities.

The same apparatus as Experiment 1 was used at
UCLA. The computer displays used in Germany were a
20 0 0 Sun Microsystems CRT, and a 20 0 0 Mitsubishi
Diamond Pro 2070 SB CRT. The resolution was 1280
· 1024. With this resolution and image size of 450 ·
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450 pixels, the angular size of the image was 138 · 138
at the viewing distance of 57 cm.

Results

The data were analyzed similarly as in Experiment 2
(Figure 4). It should be emphasized that an ‘‘old’’
response to an ‘‘old’’ object being tested in a ‘‘new’’
view was now a false alarm.

We first compared the overall hit rates between the
basic and subordinate level blocks. The main effect of
block was significant, F(1, 56) ¼ 4.28, p , 0.05, where
the overall hit rate for the basic level block was 83.91%
and that for subordinate level block was 91.84%.
Interestingly, the hit rate for the basic level was lower
than that for the subordinate level block. Because the
average hit rate for matched views in Experiment 2 was
92.97%, this effect in Experiment 3 must have to do
with the task difference between Experiments 2 and 3.
In Experiment 3, it seemed difficult for participants to
remember the exact studied images in the basic level
study phase without similarly shaped objects for
explicit comparison. In absence of within category
distractors with similar shapes and features, view
generalization appears to be automatic. This automatic
view generalization not only raised the false alarm rate
for ‘‘old’’ objects’ in their ‘‘new’’ views (see below), but
also lowered the hit rates for the basic level objects.

We further looked into the decision criterion in order
to check whether this lowered hit rate was due to the
decision criterion change from Experiment 2 to
Experiment 3. It turned out that this change, from
the b value of 1.02 to 1.25, did not reach significance
(t(56)¼ 1.83, p¼ 0.073). In terms of the bias, however,
the bias difference between the two experiments was
highly significant. This difference, however, was almost
entirely due to the shift of the bias-free or optimal
decision criterion location from Experiment 2 to
Experiment 3. This is because in Experiment 2 the
relative frequency of ‘‘signal’’ and ‘‘noise’’ was 1:1,
whereas in Experiment 3 it was 1:3. As a result, the
optimal decision criterion was shifted to the right from
Experiment 2 to Experiment 3. Nevertheless, this bias
difference should not affect any of the conclusions in
this study, because the hypothesis testing was based on
the pattern of results within each experiment.

We also calculated d 0 per participant, per block, and
per study view (canonical or non-canonical). It turned
out that in the basic level block, the average d 0 in
Experiment 3 was significantly lower than in Experi-
ment 2 (2.12 vs. 2.79, p , 0.0001). However, the d 0

scores in the subordinate block were comparable
between the two experiments (1.83 vs. 1.70, p ¼ 0.14).
These results suggest that, from Experiment 2 to
Experiment 3, participants could not possibly just shift
the decision criterion in order to switch from object

recognition to image recognition. Instead, the way in
which internal representations were constructed was
different between the two experiments. In other words,
the independence model proposed by Poggio and
Edelman (1990) was unlikely to account for these
results.

Within each block, the hit rates were similar for non-
canonical and canonical matched views (basic level:
85.96% and 81.86%, t(56)¼ 1.89, p¼ 0.63; subordinate
level: 91.67% and 92.02%, t(56) , 1). The overall false
alarm rate for ‘‘new’’ objects was lower for the basic
level (4.01%) than for the subordinate level block
(15.08%), an effect similar to what was observed for the
object-based task in Experiment 2. Within a block,
there was no significant difference in the overall false
alarm rates for new objects between canonical and non-
canonical views (basic level, 3.80% and 4.23%, t(56) ,
1; subordinate-level, 13.36% and 16.81%, t(56)¼ 1.47,
p¼ 0.15).

We further separated the false alarm rates for the
‘‘old’’ and ‘‘new’’ objects. There was a significant
difference between these two sets of objects for both
non-canonical and canonical test views in each block.
In the basic level block, the false alarms for the non-
canonical test views were 35.46% (‘‘old’’ objects) vs.
4.23% (‘‘new’’ objects), t(56) ¼ 11.86, p , 0.001. The
false alarms for the canonical test views were 45.15%
(‘‘old’’ objects) vs. 3.80% (‘‘new’’ objects), t(56)¼16.68;
p , 0.001. In the subordinate level block, the false
alarms for the non-canonical views were 42.46% (‘‘old’’
objects) vs. 16.81% (‘‘new’’ objects), t(56) ¼ 7.32, p ,
0.001. The false alarms for the canonical views were
36.93% (‘‘old’’ objects) vs. 13.36% (‘‘new’’ objects),
t(56) ¼ 7.20, p , 0.001. These differences further
indicate that there was an automatic view generaliza-
tion from a study view to other views, even though the
participants were explicitly instructed not to generalize.
For ‘‘old’’ objects, the false alarms for non-canonical
views (42.26%) were not significantly different from
canonical views (36.93%), t(56) ¼ 1.24, p ¼ 0.22.
However, the ‘‘old’’ responses for ‘‘old’’ objects were
always lower when the study-test views were mis-
matched rather than matched. We refer to this
difference as the performance drop. The average drop
was bigger in Experiment 3, from 87.88% to 40.00%,
F(1, 56)¼ 72.26, p , 0.001 than in Experiment 2 (from
92.97% to 80.07%), indicating that the participants
followed the instructions to perform the image recog-
nition task to some extent, despite the automatic view
generalization (Figure 4).

We looked into the performance drop more closely.
The main effect of study view was not significant, F(1,
56) , 1. There was a significant interaction between
block and study view, F(1, 56)¼5.14, p , 0.05, between
block and test view, F(1, 56)¼ 7.18, p , 0.01, but not
between study and test views, F(1, 56)¼ 1.63, p¼ 0.20.
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The three way interaction between block, study view,
and test view was also significant, F(1, 56)¼ 8.00, p ,

0.01.
In order to better understand the above interaction

effects, we analyzed the ‘‘old’’ response data within
each block. A 2 · 2 ANOVA for the basic level block
showed that there was a main effect for test view,
F(1, 56)¼ 270.78, p , 0.001. This means that the ‘‘old’’
response rate was higher when the study-test views
matched than when mismatched (NC: 85.96% vs.
35.46%, CC: 81.86% vs. 45.15%). The main effect
for study view was significant, F(1, 56)¼ 4.47, p , 0.05.
This main effect is complex to interpret, because the
comparison involves both hits and false alarms. The
interaction between study and test views was highly
significant, F(1, 56)¼ 14.41, p , 0.001. This means that
the performance dropped from matched to mismatched
views significantly differently (50.49% drop for non-
canonical study views, and 36.71% for canonical ones).
The results indicate that participants made fewer errors
in following the instructions for non-canonical objects,
implying that either non-canonical images were encod-
ed in memory better or canonical images generalized to
other views more involuntarily. This involuntary view
generalization, in absence of within category distrac-
tors, probably led to more false alarms for ‘‘new’’ views
of ‘‘old’’ objects.

The similar 2 · 2 ANOVA for the subordinate level
block, in comparison, showed the following results.
There was a main effect for test view, F(1, 56)¼ 385.93,
p , 0.001, as expected. There was no main effect for
study view, F(1, 56) ¼ 1.31, p ¼ 0.25. There was no
significant interaction between study and test views,
F(1, 56) ¼ 1.14, p ¼ 0.29. This means that the
performance drop was comparable from a non-
canonical study view to a canonical test view
(49.21%) and vice versa (55.09%).

The results above indicated that the effects found in
Experiment 2 were reversed when the task of viewpoint
irrelevant object recognition was changed to view
dependent 2D image recognition of 3D objects.

Finally, the attractiveness rating for this experiment
showed a pattern similar to that in Experiment 2. In the
basic level block, canonical views were again rated as
more attractive than non-canonical views, 0.61 vs. 0.36,
t(56) ¼ 3.90, p , 0.001. In the subordinate block, no
difference could be found (t , 1). Thus the attractive-
ness rating cannot explain the difference in results
found in the two experiments.

In conclusion, results in Experiment 3 were incon-
sistent with Equation 1, which never predicts better
view generalization from canonical to non-canonical
views than the other way around. The fact that a ‘‘new’’
view of an ‘‘old’’ object was involuntarily categorized as
‘‘old’’ substantially more often than chance also argues

against the independence model by Poggio and Edel-
man (1990).

Discussion

Successful object recognition requires an efficient
internal representation and matching process between
the representation and the input. Ideally, the represen-
tation should accurately characterize the full 3D
structure of an object to allow recognition from any
viewpoint. In practice, however, the visual system may
not be powerful enough to reconstruct the full 3D
structure from a finite number of views. Thus, this
question remains: what can the visual system do to
approximate the 3D structure of an object so that the
object from a new viewpoint can be effectively inferred,
albeit imperfectly?

Poggio and Edelman (1990) proposed their model to
achieve viewpoint invariant recognition by summing
similarity measures between the input image and each
independently stored view of the object (Longuet-
Higgins, 1990). When viewpoint relevant recognition is
required, it is sensible not to sum but to select the best
possible match from the stored views to compare with
the threshold criterion. In both view relevant and
irrelevant object recognition, Poggio and Edelman
(1990) would predict that Equation 1 hold, i.e.,
recognition performance should be better for a
canonical view that follows a non-canonical view
presentation than the other way around. A subset of
our experimental results, however, was inconsistent
with this prediction even with our assumption of a
generic similarity measure in the Poggio and Edelman
(1990) model. This suggests that the assumption of
independence of stored views made by this model
cannot account for human performance.

Alternatives to view-approximation model

The inadequacy of the independently stored views
assumption has also been experimentally demonstrated
by other studies. Wallis and Bülthoff (2001) have
shown that observers tend to better associate sequen-
tially presented views with a single object when the
sequence in time was smooth rather than scrambled.
This result suggests that coherent and smooth transi-
tion from one view to its neighboring view is relevant
and important in building a representation. In other
words, independent storage of views is insufficient; and
encoding the transition from one view to the next, or
effectively encoding object rotation in 3D from one
view to the next, may be necessary, even if this
encoding is imprecise.
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If the internal representation of an object is not
encoded as an independent set of views, then an
incoming view needs to be integrated into the already
existing representation of that object. How might an
existing representation incorporate a new input view in
order to infer the appearance of the object from a
viewpoint that is rotated away from the new input?
Unfortunately, no computational models exist that
offer a detailed account on this integration. We can
only speculate how this task might be achieved from
existing models.

Alter and Jacobs (1998) have studied a simpler
problem, when there is a 3D object model and a 2D
input image, both specified by coordinates of point
features. They asked the following question: how can
correspondence between the 3D model and the 2D
image be fully established, under the assumption that
correspondence between some feature points is already
known? Alter and Jacobs (1998) characterized this
problem as uncertainty propagation from the known
correspondence to the unknown. Uncertainty exists
because the exact pose of the 3D object from which the
2D image is projected is unknown, and because there
are always measurement errors in locating the image
features. Undoubtedly, the problem becomes much
more challenging when some correspondence is known
from one viewpoint, and new correspondence needs to
be established from a different viewpoint, when the 3D
structure of the object is not perfectly represented.

Another alternative to the view-approximation
model are the feature-based models, which are prom-
ising in explaining biological object recognition (Ull-
man, 2006; Torralba, Murphy, & Freeman, 2007;
Wallis, Siebeck, Swann, Blanz, & Bülthoff, 2008). It
is likely that a canonical view may share more features
with other views of the same object than a non-
canonical view does. Thus, feature-based models may
be able to offer an explanation to the asymmetric
results between canonical and non-canonical views
found in the current study. Whether or not existing
feature-based models can indeed predict the patterns of
the results in the current study, however, can only be
known after model simulations, which is beyond the
scope of this study.

Involuntary view generalization

In Experiment 3, object recognition is viewpoint
relevant. Therefore, when an object is seen from a
certain viewpoint, view propagation is supposed to be
minimal. The existing representation is also supposed
to be subdued since the major source of information for
the viewpoint relevant recognition is primarily the
study view. Our results indicated that the effects found
in Experiment 2 were reversed when the task of

viewpoint irrelevant object recognition was changed
to view dependent 2D image recognition of 3D objects.
We hypothesize that in the natural task in Experiment 2
information from one previously seen view of an object
automatically propagates to nearby viewpoints of the
same object. That is, the representation of the object
automatically attempts to predict, or characterize, what
the object looks like from other viewpoints. As far as
we know, this is the first time that unavoidable
interference from object-judgment to image-judgment
is being explicitly reported and discussed in object
recognition literature.

We found in Experiment 2 that for basic level
objects, this propagation was symmetric between
canonical and non-canonical views. Importantly, we
also found that for subordinate level objects, the
propagation from non-canonical to canonical views
was more accurate than the other way around. In
Experiment 3, when participants were instructed to
treat a new view of an ‘‘old’’ object as ‘‘new’’ instead of
‘‘old,’’ they were effectively instructed to suppress the
process of view propagation that probably led to
reconstruction of the internal representation. Appar-
ently, such suppression was not fully effective. Some
aspects of this view propagation were involuntary in
that ‘‘new’’ views of ‘‘old’’ objects’ were categorized as
‘‘old’’ more often than ‘‘new’’ objects. Based on our
results it appears that the involuntary view propagation
is more likely for objects studied in canonical than in
non-canonical views, especially so in absence of within
category distractors. On the other hand, the experi-
mental instruction, or the top-down aspect of the
suppression, was partially effective in that for the
subordinate level objects, the asymmetric effect of view
propagation disappeared. In other words, since the
propagation from non-canonical to canonical views
was more accurate in Experiment 2, it means that the
suppression in Experiment 3 was relatively more
effective for non-canonical views. The results, similar
to those for the basic level in Experiment 3, indicate
that participants made fewer errors in following the
instructions for non-canonical views, probably imply-
ing that non-canonical images were better encoded into
memory. Performance was better for images studied in
non-canonical views both in Experiment 2 (object
recognition task) and Experiment 3 (image recognition
task). On the other hand, the same results may also
imply that the involuntary view generalization from
canonical to other views can be suppressed when image
details are made more important for the task at hand,
thereby reducing the asymmetry of results seen in the
subordinate level block for Experiment 3. But the
reason for this differential suppression remains unclear
based on the results of the experiments being reported
here. Nevertheless, it is reasonable to assume that such
suppression works similarly for both subordinate and
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basic level objects. Then one would expect that, for
basic level objects, propagation from non-canonical
views was also more effectively suppressed. This is
consistent with the data in Experiment 3.

In summary, we studied internal shape representa-
tions in object recognition with the following manip-
ulations. We manipulated how informative an object
appeared by presenting the object either from a
canonical or a non-canonical view. We manipulated
the task demand by asking a participant to recognize an
object with either between-category or within-category
distractors. We also manipulated the task demand by
asking a participant to recognize an object either
regardless the viewpoint that had been seen or from
the exact viewpoint that had been seen. Our results
showed that the view-approximation model could not
fully account for our experimental data, and suggest
that rotational relationship from one view to another
needs to be incorporated in the internal representation.
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