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The innate immune response, characterized by the rapid induction of proinflammatory genes, plays an
important role in immune responses to viral vectors utilized in gene therapy. We demonstrate that several
innate proinflammatory mRNAs, i.e., those coding for the interferon (IFN)-regulated proteins interferon
regulatory factor 1, 2�,5�-oligoadenylate synthetase, and double-stranded-RNA-dependent protein kinase as
well as those coding for the chemokines RANTES, IFN-�-inducible protein 10, and monocyte chemoattractant
protein 1, were all increased in a statistically significant manner in response to 1 � 108 IU, but not lower doses,
of a first-generation adenovirus injected into the naı̈ve brain. This indicates the presence of a threshold dosage
of adenovirus needed to elicit an acute innate inflammatory response.

The innate immune response is the first line of defense
against viral infection and is also stimulated upon infection
with virus-derived gene transfer vectors. Interferons (IFNs)
and IFN-regulated genes produced by infected cells induce
enzymes capable of degrading incoming viral mRNAs, block-
ing viral protein synthesis, and eventually killing infected cells
(7). In addition, chemokines provide signals for the recruit-
ment of numerous cell types into infected tissues (5, 15–17, 21,
22, 27). Adenoviral vector (Adv) infection of the liver is well
characterized and results in an influx of neutrophils, mono-
cytes, macrophages, and NK cells and the induction of inflam-
matory genes, i.e., the genes for tumor necrosis factor alpha,
IFN-�, interleukin-6 (IL-6), IL-12, and IL-1� (11, 12). Simi-
larly, injection of Adv into the brain causes a dose-dependent
infiltration of macrophages, neutrophils, lymphocytes, and NK
cells (2–4, 23–25). However, the dose response and time course
and the roles of interferons and chemokines in the innate
immune response to the injection of adenovirus into the brain
remain unknown. In the liver, innate immune responses reduce
viral input genomes �90% in under 24 h (30). Thus, the effects
of adenoviral vectors on innate immune responses in the cen-
tral nervous system (CNS) deserve further consideration.

We utilized RAd35 (a human cytomegalovirus carrying
lacZ), a first-generation adenoviral vector that is described
elsewhere (8, 18, 19, 29). C57BL/6 mice were anesthetized
using ketamine (75 mg/kg of body weight) and medetomidine
(0.5 mg/kg) and injected in the right striatum with 1 � 105 to
1 � 108 infectious units (particle/infectious-unit ratio, 30) of
RAd35 (free of endotoxin and replication-competent adeno-
virus) or saline in 0.5 �l, sacrificed, and perfused with oxygen-
ated Tyrode’s solution alone or followed by 4% paraformalde-

hyde in saline solution for immunohistochemistry. RNAs were
isolated from the striatal injection site by using TRIzol (In-
vitrogen Technologies). Probe sets for chemokines and IFN-
regulated genes and RNase protection assays (RPAs) have
been described previously (1). Autoradiographs were scanned
and band densities assessed using ImageJ software (NIH, Be-
thesda, MD). The value for each band was compared to the
L32 control band value in the corresponding lane and ex-
pressed as a ratio. Films were exposed overnight to obtain a
correct reading exposure of the L32 bands, in contrast to the
longer exposures needed for the correct detection of mRNAs
of interest. Statistical analysis was done using two-way analysis
of variance followed by a Tukey-Kramer multiple comparison
test (NCSS software).

In saline-injected mice, only the IFN-regulated genes inter-
feron regulatory factor 2 (IRF-2) and p58 were expressed at
basal levels at 1, 3, and 7 days postinjection. Injection of 1 �
105 IU did not increase the expression of any IFN-regulated
genes over basal levels, and following injection of 1 � 106 IU,
only IRF-1 showed a small increase at 1 day postinjection.
After injection of 1 � 107 IU, there were small increases in
IRF-1, 2�,5�-oligoadenylate synthetase (OAS), T-cell-specific
guanine nucleotide triphosphate-binding protein (TGTP), and
double-stranded RNA (dsRNA)-dependent protein kinase
(PKR) at 3 and 7 days; however, none of these were signifi-
cantly higher than those of controls. Following injection of 1 �
108 IU, however, we detected a statistically significant increase
in expression of mRNAs coding for IRF-1, OAS, and PKR.
The levels of these mRNAs remained elevated for up to 7 days
(Fig. 1a to d).

Our results demonstrate that whereas IRF-2 and p58 appeared
to be constitutively expressed and not regulated by adenovirus
injection, the IFN-regulated mRNAs for IRF-1, OAS, and PKR
were found to have significant increases in expression and there-
fore may play a critical role in the innate immune response to the
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highest dose, 1 � 108 IU, of RAd35. The peak of expression of
IFN-regulated genes occurred at 24 h postinjection, but expres-
sion continued to be detected for up to 7 days, indicating an early
role for interferons and IFN-regulated genes in the innate im-
mune response to viral vectors. Thus, a threshold for the induc-
tion of an IFN-regulated innate immune response exists at 1 �

108 IU of adenovirus, since lower doses did not stimulate a sta-
tistically significant IFN response.

Because chemokines orchestrate inflammatory cell recruit-
ment in both the liver (33) and CNS (14), we measured acute
chemokine mRNA responses to RAd35 injection. In saline-
and virus (1 � 105 IU)-injected mice, there was no expression

FIG. 1. Analysis of IFN-regulated mRNA expression. (a) RPA gel showing bands corresponding to mRNAs of IFN-regulated mRNAs 1 day
(left panel), 3 days (middle panel), and 7 days (right panel) after intracranial injection of RAd35. Dosages of RAd35 (1 � 105 to 1 � 108) or saline
are shown below the lanes. Sizes of individual IFN-regulated mRNA probes are indicated at the far right. (b to d) Quantification of IFN-regulated
mRNA expression using ImageJ software. The band intensity was determined by dividing the optical density (OD) value for each IFN-regulated
mRNA by the OD value for the L32 control in each lane and was expressed as a percentage. To obtain a representative reading of the denser L32
bands, these bands were exposed overnight (lower L32 image), while for readings from the other mRNAs, the gels were exposed for 5 days. (b)
Quantification of IFN-regulated mRNA expression 1 day after CNS injection of saline or 1 � 107 to 1 � 108 IU of RAd35. (c) Quantification of
IFN-regulated mRNA expression 3 days after CNS injection of saline or 1 � 107 to 1 � 108 IU of RAd35. (d) Quantification of IFN-regulated
mRNA expression 7 days after CNS injection of saline or 1 � 107 to 1 � 108 IU of RAd35. *, P � 0.1 compared to control (saline) OAS value;
Œ, P � 0.1 compared to control PKR value; ■ , P � 0.1 compared to control IRF-1 value at each time point. Quantification of expression after
the injection of 1 � 105 to 1 � 106 IU of virus is not illustrated because changes were not statistically significant. We only show expression below
(1 � 107 IU) and above (1 � 108 IU) the threshold of induction of statistically significant increases in mRNA expression.
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of chemokine mRNAs at any of the time points examined.
Following intracerebral injection of 1 � 106 IU of virus, only
low levels of the mRNAs for IFN-�-inducible protein 10 (IP-
10; also called CXCL10), monocyte chemoattractant protein 1

(MCP-1; also called CCL2), macrophage inflammatory protein
1� (MIP-1�; also called CCL4), monocyte chemoattractant
protein 3 (MCP-3; also called CCL7), and MIP-related protein
1 (C10; also called CCL6) were expressed at 1 day postinjec-

FIG. 2. Analysis of chemokine mRNA expression. (a) RPA gel showing bands corresponding to mRNAs of chemokine genes 1 day (left panel),
3 days (middle panel), and 7 days (right panel) after intracranial injection of RAd35. Dosages of RAd35 (1 � 105 to 1 � 108) or saline are shown
below the lanes. Sizes of individual chemokine mRNA probes are indicated at the far right. (b to d) Quantification of chemokine mRNA expression
using ImageJ software. The band intensity was determined by dividing the OD value for each chemokine mRNA by the OD value for the L32
control in each lane and was expressed as a percentage. To obtain a representative reading of the denser L32 bands, these bands were exposed
overnight (lower L32 image), while for readings from the other mRNAs, the gels were exposed for 5 days. (b) Quantification of chemokine mRNA
expression 1 day after CNS injection of saline or 1 � 107 to 1 � 108 IU of RAd35. (c) Quantification of chemokine mRNA expression 3 days after
CNS injection of saline or 1 � 107 to 1 � 108 IU of RAd35. (d) Quantification of chemokine mRNA expression 7 days after CNS injection of saline
or 1 � 107 to 1 � 108 IU of RAd35. *, P � 0.1 compared to control (saline) IP-10 value; Œ, P � 0.1 compared to control MCP-1 value; ■ , P �
0.1 compared to control RANTES value at each time point; #, P � 0.1 compared to day 1 RANTES, IP-10, and MCP-1 values after injection of
1 � 108 IU. Quantification of the injection of 1 � 105 to 1 � 106 IU of virus is not illustrated because changes were not statistically significant.
We only show expression below (1 � 107 IU) and above (1 � 108 IU) the threshold of induction of significant increases in mRNA expression.
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tion, and only residual levels of C10 were detectable at 3 and
7 days postinjection. Injection of 1 � 107 IU resulted in higher
expression of the chemokines IP-10, MCP-1, MIP-1�, MCP-3,
MIP-2, and C10 at 1 day postinjection. RANTES (regulated on
activation of normal T cell expressed and secreted; also called
CCL5), IP-10, and C10 had small increases at 3 days postin-
jection, and only very low levels of C10 remained at 7 days
postinjection. However, none of these changes achieved statis-
tical significance compared to controls. Only at the highest
dose, 1 � 108 IU, did we detect significantly elevated levels of
IP-10, MCP-1, and RANTES (Fig. 2a to d). mRNAs for
MIP-1� and MCP-3 were also elevated but did not reach
statistical significance. Elevated mRNAs were significantly re-
duced at the 7-day time point. Thus, while the IFN-regulated
response remained active for 7 days, the chemokine increase
was transient.

The IFN-regulated genes that had the largest increases, i.e.,
those encoding OAS, IRF-1, and PKR, have several different
functions. OAS activates the endoribonuclease RNase L to
degrade single-stranded viral RNA (13), IRF-1 activates inter-
feron alpha and beta transcription (20), and PKR is involved in
phosphorylation and activation of the NF-	B pathway (10).
OAS, IRF-1, TGTP, and PKR have each been implicated in
the innate immune responses to viral infections in the liver (6,
28, 31, 32). Despite the rapid dose-dependent increase in ex-
pression of the IFN-regulated genes at early time points and
their continued expression for up to 7 days following infection,
transgene expression from adenoviral vectors remains unaf-
fected, as expression can be detected by immunohistochemistry
for up to at least 4 months after injection of adenoviral vectors
into the brain (Fig. 3) (3, 8, 9, 23, 25, 26, 34).

The chemokines RANTES, MIP-1�, MCP-1, and MCP-3
have been shown to recruit monocytes, activated T cells, NK
cells, and dendritic cells into infected tissues, while IP-10 is
primarily involved in the recruitment of activated T cells and
NK cells (5, 15–17, 21, 22, 27). Previous work from our labo-
ratory has shown that following injection of 1 � 108 IU of
adenoviral vector into the brain, infiltration of CD45� lympho-
cytes, monocytes, granulocytes, dendritic cells, and NK cells
and of F4/80� macrophages and activated microglial cells can

be seen at 7 days postinjection. The influxes of CD45� and
F4/80� cells are consistent with the chemokine mRNAs that
were elevated in our RPA studies and provide evidence that
these may be involved in the recruitment of different immune
cells into the CNS. Furthermore, the chemokine mRNAs with
increased expression in the CNS following injection of RAd35
are similar to those seen to increase in the liver (MIP-1�,
MIP-3, MCP-1, and IP-10) (33) and the spinal cord (RANTES,
MCP-1) (14), indicating that similar sets of chemokines may be
involved in recruitment of immune cells to the brain and to
peripheral organs.

Our work demonstrates that specific chemokines and IFN-
regulated genes are involved in the rapid inflammatory re-
sponse to first-generation adenoviral vectors in the CNS, and it
is this innate response that produces transient inflammation in
the brain that could exacerbate preexisting conditions and
eliminate vectors carrying beneficial transgenes. However, this
increase was only statistically significant at a dose of 1 � 108

IU. Previously, we demonstrated that doses below, but not
above, this threshold allow long-term transgene expression in
the brain and induce relatively mild early innate inflammatory
responses (23). We demonstrate here that the mechanism un-
derlying the threshold is the stimulation of the IFN-regulated
inflammatory response and gene expression and the activation
of chemokine production. The elucidation of the threshold at
which viral vectors induce a strong innate inflammatory re-
sponse explains why the cellular inflammatory response is
stronger and deleterious at doses of vector of �1 � 108 IU and
why these high doses will curtail long-term gene expression in
the CNS. These findings are of importance for the future of
adenoviral vector-mediated gene therapy, as they establish the
dose of adenoviral vector below which a response from the
innate immune system will not be initiated and the vector will
thus be safe and effective (23).
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