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Distortion-free magnetic resonance imaging in the zero-field limit
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a b s t r a c t

MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a
homogeneous static magnetic field much higher than the fields generated across the field of view by the
spatially encoding field gradients. Without such a high field, the concomitant components of the field
gradient dictated by Maxwell’s equations lead to severe distortions that make imaging impossible with
conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with
a fundamentally different methodology in which the applied static field approaches zero. Our technique
involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with
a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth’s
field without cancellation coils or shielding. Other potential applications include quantum information
processing and fundamental studies of long-range ferromagnetic interactions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In MRI, the Larmor precession frequency x(x, y, z) = cB(x, y, z) of
the proton spins in the position-dependent magnetic field B(x, y, z)
frequency- and phase-encodes the proton density distribution into
a magnetic signal that is subsequently decoded to form an image
[1] (c is the magnetogyric ratio). In clinical MRI machines [1] the
strength of the applied homogeneous static magnetic field B0 = B0 ẑ
is typically 1.5 T. There has been recent interest, however, in systems
operating in magnetic fields of the order of 10�4 T (for example
[2–7]), where T1-weighted contrast is significantly enhanced [5]
(T1 is the longitudinal relaxation time). The loss of polarization is
compensated—at least in part—by prepolarizing [8] the spins at a
much higher field, or by hyperpolarization techniques using lasers
[9], dynamic nuclear polarization [10,11] or parahydrogen-induced
polarization [12]. As the frequency is lowered, the loss of signal
amplitude inherent in Faraday-Law detection is mitigated by detect-
ing the nuclear magnetization with either a Superconducting QUan-

tum Interference Device (SQUID) [13] or an atomic magnetometer
[14], both of which respond to the magnetic flux itself, rather than
its time rate of change. Regardless of the magnitude of B0, all cur-
rently used imaging processes involve the superposition of magnetic
field gradients on a static field to impose spatial variations of the to-
tal field across the subject or sample. In the zero static field regime
reported here, conventional MRI gradients are unable to encode
the spins along a given direction and Fourier encoding breaks down.

2. Theory

In conventional MRI techniques, the applied magnetic field gra-
dients are assumed to be linear and unidirectional so that the field
due to gradients is given by B(x, y, z) = (Gxx + Gyy + Gzz) ẑ, where
Gx = oBz/ox, Gy = oBz/oy, and Gz = oBz/oz are constants [1]. As an
example, B(x, y, z) = Gzz ẑ is shown in Fig. 1a. In reality, however,
such idealized gradients are forbidden by the Maxwell equations
divB = curlB = 0 for any time-independent magnetic field B in free
space. In fact, any gradient must be accompanied by concomitant
gradients in at least one additional direction, as illustrated in
Fig. 1b. At very low static fields the undesired gradient components
perpendicular to B0 induce severe image distortions [15–17]. The
degree of distortion is characterized by a parameter e = GL/B0,
where G is the magnitude of the field gradient and L is the image
field of view (FOV) [17]. When e << 1, the gradient fields can be
approximated as unidirectional, greatly simplifying image encod-
ing and reconstruction and leading to negligible image distortion.
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This ‘‘truncation” of the concomitant fields forms the basis of
nearly all MRI techniques used today including projection recon-
struction and Fourier imaging [1].

Several approaches have been proposed for imaging in the
regime e >> 1 where conventional techniques fail [18–20]. Our
experiment relies on the fact that, for very small angles, the preces-
sion of spins about an arbitrary field B can be represented by the
sum of the precessions about each component of B [18]. After such
a precession, the magnetization components that have evolved in
the concomitant field can be reversed while leaving the desired
unidirectional encoded component unchanged, an example of an
average Hamiltonian [21]. Fig. 2a shows the pulse sequence for
two-dimensional imaging in the limit of zero static field, and
Fig. 2b and c depicts the classical evolution of spins at (y0, z0) sub-
jected to this sequence. The proton spins are first polarized along
the x-axis by a large field Bp which is turned off nonadiabatically
[11] at time t = 0 (point A in Fig. 2a–c). The gradient field with
the approximate form (cross terms have been neglected)

Bðy; zÞ ¼ ð@By=@yÞy ŷþ ð@Bz=@zÞz ẑ ð1Þ

is turned on, and subsequently turned off nonadiabatically at time s
(point B). During this time interval, the spin precesses about B(y0, z0).
The time s is chosen to satisfy the requirement s << 1/cGzL. Conse-
quently, the precession during the interval s is small, and we can
treat it as the sum of precessions around ẑ and ŷ: dz = c(oBz/oz)z0s
around ẑ (Fig. 2b) and dy = c(oBy/oy)y0s around ŷ (Fig. 2c). After
the gradient pulse, a p pulse of uniform field Dp is applied along
the z-axis with amplitude and duration adjusted to produce a pre-
cession angle of p around ẑ. This pulse flips the spin to the point
C in Fig. 2b and c. Subsequently, a second gradient pulse brings
the spin to D, and a second p pulse to E. This sequence of pulses pro-
duces a net precession of the spin about Bz, but no net precession
about By. Thus, the two p pulses average out the components of
field perpendicular to ẑ, leaving an effectively unidirectional gradi-
ent field Beff(y, z) = Gzz ẑ.

To implement this sequence, it is convenient to define a ‘‘pulse
unit” consisting of two gradient pulses and two p pulses. Clearly,
the addition of subsequent pulse units increases the angle of pre-
cession about ẑ. After n pulse units, the gradient has been applied
for a total time tn = 2ns. Data are acquired at discrete values of k,
namely

kðtnÞ ¼ c
Z tn

0
GzðtÞdt; ð2Þ

using point-by-point detection in which each point in k-space is
acquired in a separate experiment. After the final pulse unit, a small
measurement field Bm is turned on along the z-axis and the NMR
signal from precession about this field is detected (Fig. 2d). The Fou-
rier transform of this real-valued signal produces a complex-valued

peak in frequency space, yielding the real and imaginary parts of the
signal at k(2ns). After completing the acquisition, the k-space pro-
jection is Fourier transformed to obtain a one-dimensional, real-
space projection of the sample. Subsequently, we rotate the sample
through an angle h (<<p) and acquire another projection; the proce-
dure is repeated until the range from 0� to 180� is covered. The
image is reconstructed using filtered back-projection [1].

3. Experimental methods

The experimental configuration is shown schematically in
Fig. 3. A double-walled Pyrex vacuum vessel is immersed in liquid
helium contained in a dewar surrounded with a single-layer mu-
metal shield to attenuate external magnetic fields. A superconduc-
ting lead shield inside the dewar stabilizes the residual magnetic
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Fig. 1. Idealized and achievable magnetic field gradients. (a) Idealized gradient field
B = (@Bz/@z)z ẑ. Such a field violates Maxwell’s equations. (b) Example of a realizable
gradient field in the y–z plane of the form B(y, z) = (@By/@y)y ŷ + (@Bz/@z)z ẑ. Lengths
of vectors represent relative field strengths.
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Fig. 2. Protocol for MRI in zero static field. (a) Pulse sequence vs. time. (b and c)
Progression of the spin vector at times t = 0 (A), s (B), 2s (C), 3s (D) and 4s (E) about
(b) z-axis and (c) y-axis. (d) Pulse sequence used for the zero-field MRI experiment
differs from that in b in two respects. First, after the final pulse pair, a gradient pulse
was applied for a time s/2; this pulse corrects higher order errors [18,19]. Second, to
ensure that the important k = 0 point was included, the gradient was inverted in the
first pulse unit, so that the first point in k-space was k(5s/2) = �(3s/2)cGz. All
subsequent gradient pulses have positive polarity; for example, the second k-space
point was k(9s/2) = (s/2)cGz. Note that the measurement field Bm is not applied
during encoding pulses; it is used solely for point-by-point k-space acquisition,
enabling quadrature detection with a single sensor.
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field. The sample rests at the bottom of the insert—which has
room-temperature access—and is maintained in the liquid state
at approximately �50 �C by a heater; the heater is switched off
during encoding and data acquisition [22]. The coils required to
generate the magnetic fields are wound from insulated NbTi wire
and are attached to the outside of the insert. A Helmholtz pair pro-
vides a uniform field along the z-axis for the p pulses, and a second
Helmholtz pair, wound on top of the first, generates the measure-
ment field Bm. The rectangular gradient coils generate a field with
the approximate form

Bðy; zÞ ¼ ð@By=@yÞyŷþ ð@Bz=@zÞzẑ ð3Þ

in the y–z plane (shown in Fig. 1b) over the imaging FOV, where
oBy/oy � �0.9 (oBz/oz); we neglect the cross terms and terms higher
than first order in the gradient. Since we image in the y–z plane, we
also neglect the effects of gradients along x̂. A further pair of coils
largely cancels the residual field from the Earth, which is predomi-
nantly along the x-axis. The signal from the precessing spins is
detected by a first-derivative, superconducting gradiometer cou-
pled to the input coil of a Nb-based SQUID [13]. The gradiometer,
which consists of two Nb-wire loops of nominally equal area wound

in opposite senses and connected in series, reduces ambient noise in
the measurement direction. A series array of 24 Josephson junctions
limits the supercurrent while the fields are being switched [23]. The
SQUID is enclosed in a Nb shield suspended below the insert, and is
read out using a flux-locked loop [13].

4. Results

Our results are shown in Fig. 4. Fig. 4a shows the geometry of
the phantom in an image acquired in a 9.4-T MRI system with a
FOV of 23 mm. Fig. 4b shows the image obtained with a gradient
echo sequence in an applied static field of 0.12 lT, corresponding
to an NMR frequency of �5 Hz, applied along the z-axis. The image
was acquired using point-by-point detection (see Appendix A). We
have independently measured the residual field Br arising from
imperfect shielding, and estimate that the sum of the applied
and residual fields yields e > 6.5. As expected, in this regime of
strong concomitant gradients, Fourier encoding breaks down and
the image bears no resemblance to the phantom [15–17].

Fig. 4c shows the image acquired in zero applied field with the
sequence shown in Fig. 2d. We minimized the residual field Br by
performing separate NMR experiments while varying the cancella-
tion field along the x-axis. The minimum NMR frequency was
about 8 Hz, corresponding to Br � 0.2 lT. With a FOV L = 23 mm,
gradient pulse magnitude Gz = 100 lT/m, and regarding the resid-
ual field as B0, we find e > 10, a regime which is clearly beyond
the realm of conventional MRI. Our image, however, closely resem-
bles the high-field image. Acquisition of this image required 5.6 h;
in Appendix B we illustrate how this time could potentially be
reduced to a few minutes.

5. Discussion

We can generalize our zero-field technique to the case of a
uniform ambient field Ba, which imposes conditions on both the
gradient and p pulses. For a given amplitude, the maximum gradi-
ent pulse duration is limited by the need to keep the precession an-
gle small. In practice, though, we find that the zero-field sequence
is quite robust—in the image shown in Fig. 4c, the maximum pre-
cession angle is approximately 65�. For a total field of 50 lT
(approximately the Earth’s field), an upper bound of 65� limits
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Fig. 3. Configuration of experiment.

Fig. 4. Images of a phantom. Views are along the axis of a nylon cylinder 17 mm in diameter and 35 mm long in which a cavity has been cut and filled with water (a) or
ethanol (b and c). (a) High-field conventional image acquired at 9.4 T. (b) Conventional gradient-echo image with e > 6.5 bears no relation to the phantom due to concomitant
field distortions. (c) Image encoded in the approach to zero applied static field where the concomitant fields of the encoding gradients yield e > 10. The prepolarization field
Bp � 10 mT was applied for 2 s. The image was encoded in nearly zero static field using 100-lT/m gradient pulses with a duration s = 5 ms. The p pulses, with a magnitude of
approximately 12 lT and duration of 1 ms, produced an effective field Beff = (@Bz/@z)z ẑ. The p pulse amplitude was determined in separate experiments to an accuracy of ±1%.
After the spins were encoded, the NMR signal was acquired in 1 s in a measurement field Bm = 3.75 lT, corresponding to an NMR frequency of 160 Hz. Projections were
acquired every 7.5�, so that 24 projections covered the range from 0� to 172.5�. The time for each projection was about 14 min, giving a total acquisition time of about 5.6 h.
Each k-space projection contained 24 points.
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the maximum duration of the gradient pulse to about 85 ls: the
angle of precession during a field pulse of amplitude B and dura-
tion s is given (in radians) by d = cBs. For d = 65� � 1.13 radians,
c = 2p � 42.6 Hz/lT, and B = 50 lT we find s � 85 ls. The presence
of Ba also affects the amplitude and duration of the p pulse. Com-
ponents of Ba perpendicular to the p pulse induce errors by modi-
fying the pulse amplitude and direction. To limit the error in the p
pulse to less than 1%, the pulse amplitude must be approximately
seven times the perpendicular component of Ba. This requirement
can be mitigated, however, by aligning the p pulse with Ba. Compo-
nents of Ba parallel to the direction of the p pulse, Ba (parallel), can
be beneficial; the total field during the p pulse is

Bp ¼ BpðappÞ þ BaðparallelÞ; ð4Þ

where Bp (app) is the applied p pulse. Thus, if one aligns the system
so that Bp is parallel to (say) the Earth’s field to within about 8�, one
can keep errors in the p pulse amplitude to less than 1% and acquire
undistorted images (see Appendix C).

A general comment about concomitant gradient problems is in
order. While distortion errors arising from small values of e can be
corrected for by post-processing or pulse sequence design [16], the
general problem of arbitrary e is considered intractable [17]. This
does not mean that reconstruction algorithms for general B-field
distributions cannot be devised, but that the general reconstruc-
tion mapping problem becomes more ambiguous and ill-defined.
For example, information would be entirely lost for all spatial loca-
tions at which the local magnetic field points parallel to the axis of
a Faraday detector loop. If the exact field distribution is known and
enough detectors are used, it should be possible to detect and
reconstruct all image information using, for example, an array of
carefully positioned detectors and inverting by taking appropriate
linear combinations (see Bouchard and Anwar [24] for a formalism
which could be adapted). Hennig and co-workers [25] have shown
that nonlinear gradients that vary in direction do not pose prob-
lems; however their image reconstruction method assumes a uni-
form axis of quantization, which is not the case here. The method
proposed in this article has the important advantage that it does
not require an array of detectors. Finally, we have used SQUID
detection for this demonstration because it works well in the
zero-field limit, but our method could be used with any suitable
detector, such as an optical atomic magnetometer [26]. In fact,
the latter option would seem to be more convenient for a portable
MRI device.

6. Conclusions

In conclusion, we have demonstrated experimentally how to
eliminate the effects of concomitant gradients so that MRI in a pure
gradient field can be performed. With further improvements in the
pulse sequence and hardware, as discussed in Appendices B and C,
and recent developments in non-cryogenic detection (e.g. [26]), the
prospect of low-field, portable MRI in a residual field is encourag-
ing. The extension to larger FOV is also possible, but would place
more demands on the hardware. In theory, there is no limit to
the FOV as long as the p pulses are short enough to permit the
acquisition of enough data points during a T2-limited period. If
we ignore detector dead times, in practice this becomes an issue
of maximum peak power which still presents substantial advanta-
ges over a continuously applied uniform truncating field. Produc-
ing the latter consumes more power and requires a careful
arrangement of coils to make the field homogeneous over a large
volume, whereas our method would take advantage of the natu-
rally homogeneous Earth’s magnetic field. From this point of view,
we believe our approach to be a competitive candidate for portable
MRI applications.

We note that our experimental demonstration utilizes a sample
with cylindrical symmetry. This was done out of convenience and
simplicity. The extension to 3D MRI is completely straightforward
provided additional gradient and p-pulse coils are added to the
setup. Multislice MRI should also be possible with the use of slice
selection, in a manner similar to that described in [20].

In addition to MRI, we envisage applications of our pulsed tech-
nique or related continuous-wave versions [20] to experiments
that use magnetic field gradients for controlling the dynamics of
spins. For example, several proposals for quantum information
processing [27–29] use magnetic fields and field gradients to con-
fine ions or electrons in one-[27] or two-dimensional [29] arrays of
traps. The analysis presented by Ciaramicoli et al. [29] clearly
shows that the presence of concomitant gradients makes it non-
trivial to address individual qubits in higher dimensional arrays.
Our technique could be used [30] to provide unidirectional and lin-
ear gradients in the field to address individual spins or groups of
spins in three-dimensional space in a relatively straightforward
manner. This addressing scheme would also enable the creation
of controlled quantum Ising spin models for fundamental studies
of long-range ferromagnetic interactions [29] in arbitrary, user-de-
signed lattices.
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Appendix A. Gradient echo imaging

The image shown in Fig. 4c was acquired using a conventional
gradient echo sequence [1] modified for point-by-point k-space
acquisition. The sequence used to acquire the k(9s/2) point is
shown in Fig. 5. The proton spins are first polarized along the x-axis
by a large field Bp which is turned off nonadiabatically at time t = 0.
Subsequently, two fields are switched on: a uniform static field B0

along the z-axis, and a negative gradient field

�Bðy; zÞ ¼ �ð@By=@yÞy ŷ� ð@Bz=@zÞz ẑ: ðA:1Þ

After a time 2s the gradient is reversed. The B0 and gradient fields
are maintained until the desired point in k-space is reached, at
which time a measurement field Bm is applied. The time-domain
data are acquired and processed as described in the main text for
the zero-field experiment.
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Fig. 5. Pulse sequence vs. time for the k(9s/2) point of the conventional image.
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The point-by-point k-space acquisition technique was used in
the conventional image in order to match as closely as possible
the conditions for the zero-field image. The conventional imaging
experiment uses the same polarizing pulse, gradients, and encod-
ing times as does the zero-field experiment. The gradient echo se-
quence requires a uniform static field B0 during encoding in order
to establish a ‘‘preferred” gradient direction; components of the
gradient perpendicular to B0 are the unwanted concomitant terms
(recall that in the zero-field sequence, the preferred gradient direc-
tion is that of the p pulses).

Appendix B. Imaging time considerations

Our implementation of zero-field MRI involves acquiring k-
space point-by-point. The primary reason is that this method
yields the real and imaginary parts of k-space, effectively providing
quadrature detection with a single sensor, but the procedure is
time consuming. For each of the 24 projections of the image we ac-
quire 24 points, each taking 3.5 s (2-s polarizing pulse followed by
up to 0.5-s encoding time and 1-s data acquisition time), and each
point is averaged 10 times to increase the signal-to-noise ratio
(SNR) leading to a total acquisition time of about 5.6 h. The imag-
ing time could be reduced substantially by using two orthogonal
SQUID-based gradiometers. Since all points in one projection could
be acquired in one experiment, the imaging time would be reduced
by a factor of 24. Increasing the prepolarization field from 10 mT to
100 mT would increase the SNR 10-fold. As shown below, these
two factors alone would reduce the acquisition time to 2–3 min.
Adding a Helmholtz pair along the y-axis (to allow p pulses in an
arbitrary direction in the y–z plane) and a second, off-diagonal gra-
dient such as @Bz/@y would make it possible to perform acquisi-
tions along arbitrary k-space trajectories, and would eliminate
the need to rotate the sample. Optimized k-space sampling would
result in further improvements in image quality and acquisition
time.

We now outline our calculations of the statements above. In
MRI, the SNR is commonly defined as the signal amplitude divided
by the standard deviation of the noise. For an acquisition time tacq

SNR ¼
R tacq

0 sðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR tacq

0 r2
ndt

q ¼
R tacq

0 sðtÞdtffiffiffiffiffiffiffi
tacq

p
" #

1
rn
; ðB:1Þ

where rn is the standard deviation of the noise and s(t) is the inte-
grated signal from the nuclear magnetization detected by the sen-
sor (assuming negligible noise) [1]. To compare the SNR of two
acquisition methods, we estimate the value of the bracketed term
from the formula

sðtÞ /
Z

y

Z
z

mðy; zÞ exp �t=T�2
� �

exp �ictBGðy; zÞ½ �dydz; ðB:2Þ

where T2
* is the transverse relaxation time, BG(y, z) is the field due

to applied gradients, and m(y, z) is a function representing the spin
distribution in the sample, normalized such thatZ

y

Z
z

mðy; zÞdydz ¼ 1: ðB:3Þ

The standard deviation of noise is time-independent and as-
sumed to originate from the sample, detector, and electronics,
which are the same in both acquisition methods; therefore, the
rn term has been omitted from the following comparison.

In the point-by-point (pbp) acquisition method described in the
text, the signal is acquired as a free induction decay (FID) in the
uniform field Bm. The demodulated signal equation in this case is
given by

spbpðtÞ ¼
Z

y

Z
z

mðy; zÞ exp �t=T�2
� �

dydz; ðB:4Þ

where, in our experiments, the transverse relaxation time T2
* was

measured to be 300 ms. Using our acquisition time tacq = 1 s,

SNRpbp /
R tacq

0 spbpðtÞdtffiffiffiffiffiffiffi
tacq

p � 0:289: ðB:5Þ

In a directly-detected experiment using two orthogonal detec-
tors, the signal could be detected as precession about the gradient
field BG during every second gradient pulse. The demodulated sig-
nal equation in this case is given by

sdirðtÞ ¼
Z

y

Z
z

mðy; zÞ exp �t=T�2
� �

exp �ictBG½ �dydz; ðB:6Þ

where

BG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@By=@yÞy
� �2 þ ð@Bz=@zÞz½ �2

q
ðB:7Þ

is the field magnitude at the point (y, z). For our value BG = 100
lT/m and a 5-ms acquisition, we find

SNRdir /
ffiffiffi
2
p R tacq

0 sdirðtÞdtffiffiffiffiffiffiffi
tacq

p � 0:0990: ðB:8Þ

The factor of
p

2 arises from the use of two detectors in quadra-
ture detection.

We now compare the difference in SNR between the two acqui-
sition methods. If the noise standard deviation rn is the same in
both cases, we find

SNRdir

SNRpbp
/ 0:0990

0:289
� 0:34: ðB:9Þ

The SNR in the directly-detected experiment is about 1/3 that of
the point-by-point experiment, while the imaging time is reduced
by a factor of 24.

As stated in the main text, our point-by-point imaging proce-
dure took approximately 5.6 h; the time is long because each k-
space point is acquired in a separate experiment. The imaging time
could potentially be reduced to approximately two minutes, for the
equivalent SNR, by acquiring the signal directly (using two orthog-
onal detectors), eliminating signal averaging, and increasing the
polarizing field from 10 mT to 100 mT.

We explain this estimate as follows. The direct acquisition
method would reduce imaging time by a factor of 24 by acquiring
all k-space points in a single experiment. The SNR loss, however, is
a factor of �3, as described previously. Elimination of signal aver-
aging reduces imaging time by an additional factor of 10, at the
cost of an additional factor of �3 in SNR. Thus, the total SNR drops
by a factor of �9 while reducing imaging time by a factor of 240.
This factor of �9 loss in SNR can be recovered by increasing the
prepolarization field from 10 to 100 mT. Together, these factors re-
sult in the same SNR, but with a substantial reduction in acquisi-
tion time.

Appendix C. Effect of a uniform ambient field on p pulse
amplitude

We consider the conditions on the p pulse imposed by the pres-
ence of a uniform ambient field. The z-axis is defined to be along
the direction of the applied p pulse. The z-axis is thus the desired
direction of the total p pulse. In the presence of an ambient field
the field amplitude along z is given by Bp (app) + Ba (parallel),
where Bp (app) is the applied pulse and Ba (parallel) is the compo-
nent of ambient field parallel to the z-axis. For a component of
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ambient field perpendicular to the z-axis Ba (perp), the total field
during the p pulse is given by (Fig. 6)

BpðtotÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½BpðappÞ þ BaðparallelÞ�2 þ ½BaðperpÞ�2

q
: ðC:1Þ

Thus

BpðtotÞ 6 1:01½BpðappÞ þ BaðparallelÞ� ðC:2Þ

for Ba (perp) 6 Bp (tot)/7.
For the limiting case in which Bp (app) = 0, the angle h in Fig. 6

gives the misalignment between Ba and the z-axis. To maintain the
condition Ba (perp) 6 Bp (tot)/7, one requires h 6 8�.
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Fig. 6. Effect of uniform ambient field on p pulse.
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