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Abstract. Degradation of type I collagen, the most 
abundant collagen, is initiated by collagenase cleavage 
at a highly conserved site between Gly775 and I1e776 of 
the od(I) chain. Mutations at or around this site render 
type I collagen resistant to collagenase digestion in 
vitro. We show here that mice carrying a collagenase- 
resistant mutant Colla-1 transgene die late in embryo- 
genesis, ascribable to overexpression of the transgene, 
since the same mutation introduced into the endoge- 
nous Colla-1 gene by gene targeting permitted normal 
development of mutant mice to young adulthood. With 
increasing age, animals carrying the targeted mutation 
developed marked fibrosis of the dermis similar to that 
in human scleroderma. Postpartum involution of the 
uterus in the mutant mice was also impaired, with per- 
sistence of collagenous nodules in the uterine wall. AI- 

though type I collagen from the homozygous mutant 
mice was resistant to cleavage by human or rat fibro- 
blast collagenases at the helical site, only the rat colla- 
genase cleaved collagen trimers at an additional, novel 
site in the nonhelical N-telopeptide domain. Our results 
suggest that cleavage by murine collagenase at the 
N-telopeptide site could account for resorption of type 
I collagen during embryonic and early adult life. During 
intense collagen resorption, however, such as in the im- 
mediate postpartum uterus and in the dermis later in 
life, cleavage at the helical site is essential for normal 
collagen turnover. Thus, type I collagen is degraded by 
at least two differentially controlled mechanisms in- 
volving collagenases with distinct, but overlapping, 
substrate specificities. 

T 
YPE I collagen is among the most abundant compo- 
nents of the extracellular matrix of many tissues, 
particularly in skin, tendons, ligaments, uterus, large 

blood vessels and bone. The helical trimeric molecules of 
type I collagen comprise two al(I) chains and one ~2(I) 
chain, encoded by two separate genes, Colla-1 and 
Colla-2, respectively (50). In mice, type I collagen is first 
synthesized in the mesenchymal stroma of the head, heart 
and somites at day 8 of gestation (E8) and its production 
continues throughout development and postnatal life (27). 
It has been demonstrated that type I collagen is critical for 
bone development (9, 10), hematopoiesis (29, 37), integ- 
rity of the vascular system (29) and for mesenchymal-epi- 
thelial induction in organogenesis (6). 

The collagen content of different tissues during develop- 
ment and in adult animals is tightly regulated by coordi- 
nated processes of synthesis and degradation (2, 8, 57). 
Failure to maintain an equilibrium between synthesis and 
degradation leads to diverse human connective tissue dis- 
orders characterized by excessive resorption (e.g. os- 
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teoporosis or inflammatory joint diseases) or excessive 
deposition (e.g. pulmonary fibrosis or scleroderma) (32, 
39). The degradation of type I collagen requires the action 
of specific collagenases since native, triple-helical mole- 
cules are resistant to attack by proteolytic enzymes at 37°C 
and neutral pH. The collagenases are members of a family 
of proteinases, the metalloproteinases or matrixins, all of 
which contain a catalytic zinc-binding domain that in- 
cludes the sequence motif HEXXH where the Glu (E) 
acts as a catalytic base. The peptide bonds between resi- 
dues Gly775 and Ile776 of the ~1(I) chain and Gly775 and 
Leu776 of the et2(I) chain are the only sites in native type I 
collagen molecules known to be cleaved by collagenases 
from various species including enzymes isolated from hu- 
man, bovine, pig and rabbit. These cleavage sites are con- 
served in collagens from amphibians to mammals and are 
similar in types I, II, and III collagens (8). Cleavage of the 
collagens at this specific site leads to the production of a 
three-quarter length helical fragment (TC a) and a one- 
quarter length helical fragment (TC B) (51). The activity of 
collagenases released from cells is under the regulation of 
proteolytic collagenase activators and specific inhibitors 
known as TIMPs (tissue inhibitors of metalloproteinases) 
(34, 35). 
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It has been assumed that the various metaUoproteinases 
play an important role in development of collagenous 
structures by altering morphogenetic tissue interactions (6, 
8). The evidence supporting this role is largely circumstan- 
tial and is based on the specific expression patterns of met- 
aUoproteinases or specific inhibitory proteins during par- 
ticular stages of development (8). Recently, it has been 
possible to obtain more direct evidence for the role of 
metalloproteinases in transgenic mice which overexpress 
stromelysin-1, a proteinase which degrades components of 
basement membranes. Expression of the transgene was as- 
sociated with altered branching patterns of the mammary 
ducts and aberrant expression of 13-casein as well as whey 
acidic protein (48). 

We have used a genetic approach to obtain direct evi- 
dence for the role of type I collagen degradation in devel- 
opment and disease. Our strategy has involved the genera- 
tion of a mutant substrate resistant to enzyme cleavage. In 
previous experiments, we introduced five different muta- 
tions into the collagenase cleavage domain of the Colla-1 
gene and demonstrated that substitution of a Pro for Ile776 

or the stabilization of the helix by substitutions of Pro for 
Gln774 and Ala777 at P2 and P2' rendered native collagen 
produced by cells in culture resistant to collagenase diges- 
tion (58). 

In the present study, we introduced one of the mutations 
(mutation IV with a stabilized triple helix) into the mouse 
genome using two different approaches. Transgenic mice 
carrying multiple copies of the mutant transgene died dur- 
ing gestation. In contrast, mice carrying the mutation in 
the endogenous Colla-1 gene developed normally and dis- 
played no obvious abnormalities as young adults. Begin- 
ning at approximately seven months of age, mutant mice 
began to develop thickened skin and patchy hair loss due 
to dermal fibrosis. In addition, postpartum involution of 
the uterus in mutant females was impaired. While the mu- 
tant collagen was completely resistant to cleavage at the 
known cleavage site by the human and rat enzymes, rat fi- 
broblast collagenase recognized an additional cleavage 
site COOH-terminal to the N-telopeptide crosslink. Our 
results suggest that the ability of rodent collagenase to 
cleave at this additional NH2-terminal locus permits nor- 
mal remodeling during development and early postnatal 
life, but that cleavage at the helical site is required for sub- 
sequent remodeling of the extracellular matrices in tissues 
such as those in skin and the postpartum uterus in which 
type I collagen is particularly abundant. 

Materials and Methods 

Materials 
Pepsin, (2,858 U/mg; Cooper Biomedical), trypsin, TPCK, and soybean 
trypsin inhibitor were purchased from Worthington Biochemical Corpo- 
ration ( Freehold, NJ ). 

p-Aminophenylmercuric acetate (APMA) 1 was purchased from Sigma 
Chemical Company (St. Louis, MO). 

Generation of Transgenics 
Transgenics were derived as described previously (59). A linearized ge- 

1. Abbrev ia twns  used m this paper:. APMA, p-aminophenylmercuric ace- 
tate; ES, embryonic stem. 

nomic DNA fragment that included about 17 kb of coding region and 3.7 
kb of 5'and 3 kb of 3' flanking sequences of the Colla-1 gene carrying mu- 
tation IV (58) was microinjected into the pronucleus of fertilized FVB 
eggs. The eggs were incubated overnight and two-cell embryos were trans- 
ferred to the oviduct of pseudopregnant females. 

Generation of Chimeras and Germlines 
J1 ES cells carrying the subtle mutations (mutation IV) at the collagenase 
cleavage site (60) were injected into C57-BL/6 and BALB/c embryos as 
described (28). Chimeras were identified on the basis of agouti pigmenta- 
tion in the coat. C57BL/6 and BALB/c chimeras were backcrossed and 
their agouti offspring were genotyped by Southern blot analysis. 

Southern Blot Analysis 
Embryo and tad DNAs were prepared according to Laird et al. (26). The 
DNA was digested with Sph I and electrophoresed in a 0.7% agarose gel. 
The DNA was denatured, neutralized and transferred onto Hybond nylon 
membranes (Amersham Corp., Arlington Heights, IL) as described by 
Sambrook et al. (43). The probe is shown in Fig. 2. 

Preparation of Collagens and Digestion 
with Collagenases 
Collagens were extracted from mouse skin, tail, or whole embryos by di- 
gestion with pepsin, 50 I~g/ml, in 0.5 M acetic acid at 0-4°C for 2-4 d. In 
some samples, extraction was carried out under the same conditions, but 
without pepsin. The insoluble residue was removed by centrifugation and 
the collagen content of an aliquot portion was determined by measure- 
ment of hydroxyproline content following acid hydrolysis (5). The pepsin 
was inactivated by neutralization with NaOH and the solution was dia- 
lyzed against Cl: collagenase buffer (0.15 M NaCI, 0.05 M Tris-HCl, pH 
7.4, 10 mM CAC12/0.25 M glucose) overnight at 4°C (58). Incubation with 
collagenase was usually for 18-20 h at 20°C and the reaction was stopped 
by the addition of EDTA to a final concentration of 50 raM; the samples 
were stored at 4°C prior to analysis by SDS-PAGE (15). Digestion prod- 
ucts were resolved by SDS-PAGE using 5 or 7% acrylamide without 
reduction and gels were stained with Coomassie blue. The human colla- 
genase preparation used here was partially purified from medium condi- 
tioned by cultured rheumatoid synovial fibroblasts as previously described 
(12). Rat collagenase was purified from medium conditioned by postpar- 
tum rat uterine cells as previously described (42). The latent collagenase 
was activated with trypsin, 5 ~g/ml for 10 min at 20°C and the trypsin inac- 
tivated with excess soybean trypsin inhibitor (12); alternatively, activation 
was with APMA. 1 mM, added at the beginning of the incubation (7, 36). 
For quantitation of relative protein content of appropriate stained bands 
after SDS-PAGE, photographs of stained gels were analyzed using the 
Hewlett Packard (Santa Clara, CA) H-P DeskScanII scanner and the 
Scan Analysis program (Biosoft, Cambridge, UK) for the Macintosh 
computer. Cyanogen bromide digestion of collagens was performed as 
previously described (58) in order to determine the incorporation of the 
mutated al(I)  chain. Band 7a (58) was quantltated, after resolution by 
SDS-PAGE, by densitometry. 

NH2-terminal Peptide Sequencing 
Collagen from the skin of mice homozygous for mutation IV was ex- 
tracted as described, in 0.5 M acetic acid without pepsin. One sample was 
incubated in collagenase buffer with purified rat fibroblast collagenase for 
18 h at 20°C; the other sample was incubated in buffer alone. Approxi- 
mately 150 txg of each was loaded into individual wells of a 5% poly- 
acrylamide gel for SDS-PAGE. Proteins were stained with Coomassie 
blue and blotted onto Immobilon-P (polyvinyl fluoride) membranes 
(Millipore Corporation, Bedford, MA). The proteins corresponding to 
"al(I)"  chains were cut out and peptide sequencing was performed as de- 
scribed (30). 

Histological Analysis 
Uterus and skin from age and sex matched wild-type and homozygous 
mutant mice were dissected and fLxed in 10% buffered Formalin. They 
were then placed in successive ethanol and xylene baths and finally em- 
bedded in Paraplast Plus (Oxford, UK) using an Autotechnicon embed- 
der (Technicon). The embedded tissues were sectioned to 5 Ixm using a 
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Reichert-Jung microtome and stained with Masson's trichrorne as de- 
scribed (3). 

Results 

Mice Carrying a Colla-1 Transgene with 
Mutations at the Collagenase Cleavage Site Die 
During Late Gestation 

To address the role of collagenases in type I collagen turn- 
over in vivo, the murine genomic clone containing substi- 
tutions of Pro for Gin774 (P2) and Ala777 (P2 ' )  and Met for 
Ile776 (P1') (Mutant IV, see reference 58, Fig. 1), was mi- 
croinjected into the pronuclei of FVB mouse embryos. 
Only a few transgenic animals were recovered: one of 13 
live embryos dissected at day 13 and one of 18 animals an- 
alyzed at weaning carried the transgene. The latter animal, 
a male, was bred with FVB females to derive transgenic 
offspring. 

As shown in Table I, none of the 11 offspring that sur- 
vived to weaning carried the transgene, suggesting that 
expression of the mutation might result in embryonic le- 
thality. Embryos at different developmental stages were 
therefore isolated and genotyped by Southern analysis. 
Transgenic embryos developed normally up to day 14.5 (E 
14.5) of gestation. Between E 15 and E 16.5, however, only 
2 out of 13 total transgenics were alive and by day 19 there 
were no live transgenics (Table I). The most obvious phe- 
notypic abnormality of transgenic embryos was the failure 
to close the abdominal and chest cavities (not shown). 
These observations suggested that expression of the trans- 
gene in the offspring of the founder male interfered with 
normal embryogenesis. It was likely that a lower gene dos- 
age due to genetic mosaicism (54) might have allowed sur- 
vival of the founder male. Indeed, of 110 genotyped off- 
spring, only 23 were transgenic, consistent with the 
founder being a germline mosaic. This was confirmed by 
comparing the number of the transgene copies in the 
founder and his transgenic offspring by quantitative 
Southern analysis (58). While the founder had approxi- 

Figure 1. Effects of human fibroblast collagenase on collagens 
from wild-type and transgenic embryos. Proteins were extracted 
from E14 embryos from a litter. Lanes 1, 2, 5, 6: Transgenics; 
lanes 3 and 4: a wild-type litter mate. Samples in lanes 7, 8 were 
collagens from mouse tail as control. Samples in lanes 1, 3, 5, and 
7 were incubated with trypsin-activated human collagenase for 
18 h at 20°C (sufficient collagenase was used to digest 25 Izg col- 
lagen); samples in lanes 2, 4, 6, and 8 were incubated in buffer 
without collagenase. 

Table L Genotype of Offspring Derived from Transgenic 
Founder 

Total Viable 
Age animal Transgenics transgemcs 

E10.5-14.5 40 6 6 
E14.5-16.5 39 13 
E18-19 8 4 
Three weeks 11 0 

mately 20 copies of the transgene in his DNA, his offspring 
carried more than 70 copies (data not shown). 

To directly investigate whether increased mutant gene 
dosage resulted in augmented transgene expression, the 
amounts of mutant RNA in founder and offspring were 
compared. Quantitative S1 analysis (58) revealed that the 
level of transgene RNA in the founder was approximately 
25% of the endogenous Colla-1 RNA, whereas the level 
in its transgenic offspring was approximately 150% (data 
not shown). To determine the composition of type I col- 
lagen chains produced in transgenic animals, collagen ex- 
tracted with pepsin in 0.5 M acetic acid at 4°C was ana- 
lyzed by SDS-PAGE. As shown in Fig. 1, a significant 
excess of etl(I) over et2(I) chains was noted in the transgen- 
ics (lanes 2 and 6) compared to control embryos (lane 4). 
These results indicate the presence of oil (I) trimers and are 
consistent with overexpression of the transgene. To assess 
whether the collagen was resistant to cleavage, the pro- 
teins were incubated with human synovial collagenase. As 
seen in lanes 1 and 5, type I collagen extracted from the 
transgenic embryos was highly resistant to cleavage com- 
pared to that from the control embryos (lane 3). These re- 
sults are consistent with those obtained previously where 
the same mutant construct was introduced into cultured 
Movl3 fibroblasts (58) and indicate that cleavage-resistant 
type I collagen was produced from the mutant transgene. 
Our results do not allow us, however, to conclude that the 
lethality of the transgenic embryos is due to the presence 
of the mutant otl(I) chains rather than the overexpression 
of the transgene. To resolve this issue, we used targeted 
mutagenesis through homologous recombination in em- 
bryonic stem (ES) cells to introduce the same mutation 
into the endogenous Colla-1 gene. 

Mice Carrying Targeted Subtle Mutations at the 
Collagenase Cleavage Site are Viable 

The same mutation as described above was introduced 
into the endogenous Colla-1 gene of ES cells using the 
Hit-and-Run procedure (20, 60). The mutant allele of the 
Colla-1 gene was named Collal  tm~ Jae according to the no- 
menclature rules (11). Chimeric mice, derived from C57/ 
BL6 or BALB/c blastocysts injected with targeted ES cell 
clones were derived and backcrossed to C57/BL6 or 
BALB/c mice. The agouti offspring were genotyped at 
weaning by Southern blot analysis to identify germline 
transmission of the mutation. Heterozygous Collal  tin1 Jae 
mice were viable and, when intercrossed, produced wild- 
type, heterozygous and homozygous offspring at a normal 
Mendelian ratio based on Southern blot analysis (Fig. 2 
and Table 1I). No gross abnormalities were observed in 
mutant mice through approximately three to six months 
of age. 
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Figure 2. Restriction map and southern blot analysis of the fl 
from heterozygous Collal tmlJae breeding. (A) Restriction map of 
a 23.5-kb genomic DNA fragment covering Colla-1 gene. Muta- 
tion at the coding sequences for the collagenase cleavage site cre- 
ated a new Sph I site which was indicated with bold letters. (B) A 
representative Southern blot analysis of DNA samples from off- 
spring of heterozygous mutant mice. DNAs were digested with 
Sph I and the Southern blots were hybridized with the probe 
showed in A. Wild-type allele, 9 kb; mutant allele, 2.8 kb. 

Mutant Mice Develop Skin Alterations and Show 
Reproductive Impairment 

At approximately seven months of age, homozygous male 
Collal  tin1 J~ mice developed skin abnormalities consisting 
of thickening and roughening and associated with patchy 
hair loss and small ulcerations. Comparison of a section of 
skin from a ten month homozygous mutant male (Fig. 3 B) 
with that of skin from an age-matched control mouse (Fig. 
3 A) revealed that the dermis from the mutant mice was 
significantly thicker than that from control mice and was 
filled with dense collagen fibers. The collagen fibers were 
irregular in form and penetrated deeply into the hypoder- 
mis. The overall increased thickness of the skin in the ho- 
mozygous Col/al  tml Jae mice extending from the epidermis 
to the muscular layer was accounted for by the increase in 
thickness of the dermis. Analysis of pepsin digests of mu- 
tant skin protein by SDS-PAGE and delayed reduction in- 
dicated that ~95% of the collagen was type I collagen 
(data not shown). Homozygous female and heterozygous 
male and female mice developed similar but milder skin 
abnormalities compared to those of homozygous males at 
the same age (data not shown). 

Mutant females revealed a striking reproductive impair- 
ment. While wild-type females produce an average of four 
to five litters with a mean litter size of six pups during a 
seven months breeding period in our laboratory, both het- 
erozygous and homozygous mutant females produced a 
significantly reduced number of litters which also tended 
to be small (Table III). It is well established that the col- 

Table I1. Genotype of Offspring Derived from Heterozygous 
Parents 

Age Wild-type H e t e r o z y g o u s  Homozygous 

3 weeks 23 51 23 
(n = 97) 

lagen content of the uterus, which increases markedly dur- 
ing pregnancy, decreases strikingly within a few days after 
parturition due to degradation by collagenases (24, 56). 
When the postpartum uteri of mutant females were com- 
pared to those of wild-type females, a striking difference 
was seen: instead of a tube-like structure with a smooth 
outer surface, characteristic of normal postpartum uteri, 
the uteri of mutant mice were filled with nodules. Cross 
sections of these uteri showed that the nodules consisted 
of collagen fibers and these fibers occupied much of the 
endometrium and myometrium of the uterine wall (Fig. 4, 
A-D). SDS-PAGE and analysis by delayed reduction of 
the pepsin digests of uterine protein showed that ~95 % of 
the collagen was type I collagen (data not shown). Colla- 
gen accumulation in the uteri of heterozygous Collal  tin1Jae 
mice was less pronounced compared to homozygous 
Collaltml Jae mice but was clearly different from wild-type 
females (data not shown). In virgin Collal  tin1 Ja~ mice, 
small accumulations of collagen in the myometrium of the 
uterus were occasionally observed. 

The results described so far indicate that animals carry- 
ing the collagenase-resistant mutation develop normally to 
adulthood. Severe abnormalities, explainable by impaired 
collagen degradation, became manifest with increasing age 
or the challenge of intense collagen resorption. 

A Novel Collagenase Cleavage Site at the 
NH2-terminus of  al(I) Chain 

To confirm that CoIlal tin1 Jae mice produce collagenase- 
resistant collagen, pepsin-resistant proteins were isolated 
from tails of wild-type, heterozygous and homozygous 
mice and digested with human synovial fibroblast collage- 
nase prior to SDS-PAGE. As shown in lanes 1 and 2 of 
Fig. 5 A, the a l ( I )  and et2(I) collagen chains from wild- 
type mice were totally cleaved by collagenase into the ex- 
pected A ~1(I) and A ~2(1) (TC A) and B ~1(I) and B ~2(I) (TC B) 
fragments (the TC B fragments migrated further than the 
TC A and are not shown here in Fig. 5 A, or in Fig. 5, B and 
C). In contrast, collagens extracted from hemizygous mutant 
mice (Collal TM Jae/Mov 13, for Mov 13 see reference 18), 
which express only the mutant but not the wild type etl(I) 
chain, were completely resistant to digestion (lanes 7 and 
8). Collagens extracted from the tail of the chimeric 
founder mouse and from a heterozygous Collal  tml Jae 
mouse were partially resistant to collagenase digestion 
(lanes 3--6). The extent of cleavage of the collagen from 
these heterozygous animals was 26% as calculated by den- 
sitometric scanning. Quantitation by cyanogen bromide 
cleavage (58) revealed that the distribution of mutant and 
wild-type a 1 (I) chains was approximately equal in the col- 
lagen extracted from the heterozygous animal (data not 
shown). This suggests that a heterotrimer of type I col- 
lagen containing a single mutated etl(I) chain is resistant to 
collagenase cleavage, consistent with a dominant negative 
effect of the mutation. 

The observation that the collagen in homozygous 
Collapml Jae mice was completely resistant to coUagenase 
degradation raised the question whether other mecha- 
nisms of degradation were responsible for the massive col- 
lagen turnover characteristic of embryonic development. 
The results described in Figs. 1 and 5 A were based upon 
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Figure 3. Histological analyses of the skin from ll-mo-old male wild-type and homozygous Collal tmlJ"e mice. (A) Wild-type skin. The 
epidermis (E), dermis (D), hypodermis (H), and hair follicle (F) are indicated. The collagen fibers are stained blue with Masson's 
trichrome. (B) Homozygous mutant skin. The magnification is the same as A. Bar, 0.1 mm. 

digestion with human interstitial collagenase, which was 
the form of collagenase used in our initial study (58). To 
test whether the mutant collagen was also resistant to 
cleavage by rodent enzymes, collagens extracted from mu- 

Table IlL Number of Litter and Offspring Raised by Wild-type, 
tin1 Jae Heterozygous, and Homozygous Collal Female 

Number 
Genotype of litter Litter size 

Wild-type 4.4 ___ 1.1 5.9 -+ 1.8 
(n = 5) 

Heterozygous 2.2 +_ 0.9 4 .4-e  1.6 
(n = l0  females) 

Homozygous  1.4 _+ 0.9* 4.7-~ 1.5 
(n = 5 females) 

Breeding period: 7 months. 
Data expressed as mean _+ SEM. 
*Differs from wild-type, paired student t-test, P < 0.05. 

tant and control mice were incubated with rat collagenase 
obtained in highly purified form (40). As seen in Fig. 5 B, 
the rodent enzyme cleaves wild-type I collagen at a similar 
position as the human enzyme (lanes 2 and 3). Digestion 
of mutant collagen isolated from hemizygous mutant mice 
revealed, however, an additional cleavage site at the 
amino end of collagen, which is not recognized by the hu- 
man enzyme. This conclusion was based on the observa- 
tion that the content of the 131,1 and 131,2 cross-linked dimer 
components from mutant mice was dramatically reduced 
after digestion with rat collagenase (lanes 3 and 6) and 
that the expected A aa,1 and A ~1,2 cleavage products nor- 
mally seen after digestion of wild-type collagen with the 
human enzyme (lane 2) were absent. Instead, the intensity 
of bands corresponding to et 1(I) and a2(I) chains increased 
significantly, suggesting that the [31,1 and ~1,2 components 
from mutant collagen were digested by rat collagenase to 
fragments that co-migrated with al(I) and a2(I) collagen 
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Figure 5. Digestion of collagens from tails of wild-type mice and 
Collaltrat Jae mice. Collagenase digestion products were resolved 
by SDS-PAGE and stained with Coomassie blue. (A) Effects of 
human collagenase on collagens extracted by limited pepsin di- 
gestion from tails of three month-old mice. Samples in lanes 1 
and 2 were from a wild-type mouse; samples in lanes 3 and 4 
were from a chimera; samples in Lanes 5, 6 were from a heterozy- 
gote; samples in Lanes 7, 8 were from a hemizygote (Collal  tin1Jae/ 
Movl3). Samples in lanes 2, 4, 6, and 8 had been incubated for 
18 h at 20°C with previously activated human collagenase; sam- 
ples in lanes 1, 3, 5, and 7 had been incubated in buffer without 
collagenase. Note that collagen from the mutation IV hemizygote 
was resistant to digestion with collagenase whereas that from the 
wild-type was completely digested under the same conditions. 

(B) Effects of human and rat collagenase on collagens extracted in 0.5 M acetic acid without pepsin from tails of 3-mo-old mice. Samples 
in lanes 1-3 were from the wild-type mouse and samples in lanes 4--6 were from the mutation IV hemizygous mouse shown in A. Sam- 
ples in lanes l ,  4 had been incubated in buffer without collagenase; samples in lanes 2, 5 had been incubated with human collagenase as 
in A; samples in lanes 3, 6 had been incubated with rat collagenase, 6.7 txg/ml. All samples had been incubated at 20°C for 18 h. Note that 
the human collagenase converted the 13 components of the wild-type collagen to A n and the a chains to A ~ fragments, whereas the rat 
collagenase appeared to convert the 13 components as well as the ct chains to A ~ fragments. In contrast, whereas neither the human nor 
the rat collagenase cleaved the a chains of the collagen containing mutation IV, the rat collagenase converted the 13 components of the 
collagen to et chains but the human collagenase did not appreciably diminish the concentration of the 13 components. (C) Effects of rat 
collagenase on collagens extracted in 0.5 M acetic acid without pepsin from skin of 3-mo-old mice. Samples in lanes 1, 2 were from a 
wild-type mouse; samples in lanes 3, 4 were from a homozygous Coll a l  tml Jae mouse. Samples in lanes 1, 3 had been incubated without 
collagenase; samples in lanes 2, 4 had been incubated with rat coUagenase, 6.7 ~g/ml. Samples had been incubated for 18 h at 20°C. 
These results on the collagenase digestion of crosslinked collagen from the mouse homozygous for mutation IV are similar to those in B 
using collagen from the hemizygous mouse. 

chains. Similar results were also ob ta ined  with collagen 
isolated from homozygous  Co lc t l  t~l J~e mice (Fig. 5 C). 
These  results suggested that  the rodent  enzyme recognizes 
a novel  cleavage site located carboxy- terminal  to the 
crosslinking site. 

To more  accurately map  the novel  NH2-terminal  colla- 
genase cleavage site, mutant  type I col lagen was digested 
with ra t  col lagenase and the products  were  resolved by 
S D S - P A G E  and t ransferred to Immobi lon-P  membranes .  
The appropr ia te  bands  were excised for amino acid 
sequence analysis and the results of  the digested and 
undigested samples were compared.  The  NH2-terminal  
sequence of  the undigested a l ( I )  chain was Ty rAspGlu -  
LysSer  whereas  that  of  the digested etl(I) chain was 
ValSerValProGlyVal .  Compar i son  with the pept ide  se- 
quence encoded  by the nucleot ide  sequence of Exons 6 
through 10 of  the mouse Col la -1  gene (Breindl,  M., un- 
publ ished da ta)  places the NH2-terminal  rodent  enzyme- 
specific cleavage site be tween  a Gly  and Val, four residues 
preceding the start  of  the major  helix and five residues 
C-terminal  to the puta t ive  cross-l inking Lys (Fig. 6). We  

conclude that  the rat  f ibroblast  collagenase recognizes two 
different  sites in type I collagen: (a) a cleavage site in the 
collagen helical domain  be tween  residues 775 and 776 of 
the a l ( I )  chain which is also recognized by all o ther  colla- 
genases so far tested; (b) a second cleavage site C O O H -  
terminal  to the lysine-derived cross-link in the N- te lopep-  
t ide of the etl(I) chain. 

Discussion 

Embryonic Lethality of  Transgenics Carrying a 
Collagenase-resistant Type I Collagen Gene 

It has been well es tabl ished that  ver tebra te  collagenase 
initiates degrada t ion  of native collagen by cleavage at a 
highly conserved sequence mot i f  present  in types I, II ,  and 
I I I  collagens in species as diverse as man and Xenopus.  
Consistent  with the conclusion that  col lagenase recognizes 
a single site in native collagen, poin t  muta t ions  of the 
mouse oH(I) collagen chain such as muta t ion  IV which 
would be predic ted  to affect cleavage and stabilize the tri- 
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N - T E R M I N A L  S E Q U E N C E  OF M O U S E  a l ( l )  C O L L A G E N  

Predicted from cDNA 

residue number 

end minor N-peptidase begm major 
hehx cleavage crosshnk hehx 

GPPGLGGNFASOHSYG YDEKSAGVSVPGPHGPSG 

-1l -4 +l 

Acid-soluble collagen 

No collagenase 

After rat collagenase 

YDEKSAGVSVPGPHGPSG 

VSVPGPP1GPSG 

novel 
rodent collagenase 

cleavage 

Figure 6. A novel cleavage site near the NH2 terminus of the (x 1(0 
chain. A partial NH2-terminal sequence of pro al(I) chain pre- 
dicted from the cDNA sequence and the NHz-terminal sequence 
of a 1 (I) chain with or without rat collagenase digestion were pre- 
sented. The amino acid residues are numbered as such; the gly- 
cine (G) at the beginning of the major helix is +1. Several other 
sites in this region are indicated with arrows. 

pie helix around the cleavage site render the protein resis- 
tant to degradation (58). Transgenic mice carrying muta- 
tion IV in multiple copies indeed produced type I collagen 
highly resistant to cleavage by coUagenase, indicating that 
the mutation had the predicted effect in vivo. With the ex- 
ception of the founder, animals carrying the transgene in- 
variably died. Previous experiments had established that 
the transgene constructs carried all known regulatory ele- 
ments required for tissue specific expression (unpublished 
data), suggesting that ectopic expression of the transgene 
was not the cause of lethality. The S1 analysis as well as 
protein analysis indicated that the transgene was highly 
expressed, resulting in the accumulation of cleavage-resis- 
tant type I collagen. The ratio of al(I)/a2(I)  peptide 
chains of type I collagen from transgenic mice varied from 
3:1 to 15:1 compared to 2:1 in the collagen from wild-type 
mice, consistent with the accumulation of a l ( I )  homotri- 
mers (Fig. 1). Overexpression of collagen and the deposi- 
tion of type I homotrimers lacking oL2(I) chains, rather 
than expression of a mutant collagen, may, therefore, be 
the primary explanation for the embryonic lethal pheno- 
type of the transgenics. This conclusion was confirmed by 
the lack of a lethal phenotype in mutant mice carrying the 
same mutation in the endogenous gene, as discussed be- 
low. We have observed occasionally that transgenic em- 
bryos overexpressing type I collagen from a wild-type 
Colla-1 transgene died prenatally with a phenotype simi- 
lar to that observed with the mutant transgene described 
here (unpublished data). These observations support the 
notion that embryonic lethality may be caused by overex- 
pression of the transgene rather than by the mutation in- 
troduced. 

Attempts have been made to analyze the function of a 
particular gene in development by expressing a mutant 
form of the protein in transgenic mice (dominant negative 
mutations: reference 22). Our results emphasize that cau- 
tion must be used in interpreting the data in transgenics 
carrying mutant transgenes since the phenotypes may not 
always be due to the expression of the mutant form of the 

protein but may also be due to overexpression or ectopic 
expression of the transgene. This caveat is particularly rel- 
evant when the stoichiometry of a multimeric protein such 
as collagen is altered by overexpression of one component 
of the multimer (23, 38, 41, 47, 49). 

Mice Producing Mutant Collagen From Collal on1Jae 
Develop Normally to Adulthood 

In contrast to the transgenic mice discussed above, mice 
generated by gene targeting technology carrying the same 
mutation in their endogenous Colla-1 gene developed 
normally to young adulthood and only later displayed al- 
terations compatible with impaired collagen turnover. 
Type I collagen isolated from homozygous Collal  tml Jae 
mice was completely resistant to cleavage by human inter- 
stitial synovial collagenase, confirming that the mutation 
had the predicted effect in vivo. Only 26% of collagen ex- 
tracted from heterozygous mutants was cleaved by the hu- 
man collagenase, suggesting that the mutation acted in a 
dominant negative manner. 

Our observations that homozygous Collal  tin1 Jae mice 
developed normally to adulthood posed an interesting 
problem: how could type I collagen turnover be accom- 
plished during embryogenesis in the absence of a func- 
tional collagenase cleavage site? The identification of the 
second site at the N-telopeptide domain of the protein, 
that is recognized by rodent fibroblast collagenase but not 
by the human enzyme, suggests the possibility that cleav- 
age at this previously unrecognized site could be sufficient 
to achieve collagen degradation during embryonic devel- 
opment. Cleavage at this site alone, however, seems not to 
be adequate to assure full equilibrium between collagen 
synthesis and degradation during later life. Our results are 
consistent with the concept that enzymes with different 
specificity utilizing two distinct cleavage sites are involved 
in collagen degradation. The two sites may be of different 
significance for type I collagen degradation in prenatal 
and postnatal life. 

Tissue Remodeling in the Adult Depends on a 
Functional Collagenase Cleavage Site between Amino 
Acid Residues 775 and 776 

As mutant mice aged, they developed a number of alter- 
ations which reflected their inability to degrade type I col- 
lagen during tissue remodeling. In the skin, the alterations 
consisted of thickening of the dermis, hair loss, and patchy 
ulcerations. Histochemical analysis revealed substantial 
accumulation of collagen in the dermis, indicating the im- 
portance of collagen turnover in the skin of the adult 
mouse. It had been shown previously that cultured human 
skin produces large amounts of collagenase, but the signif- 
icance of this observation for the in vivo situation had not 
been established (4). The accumulation of collagen in the 
dermis from mutant mice suggests, however, that type I 
collagen is actively turned over even in adult skin. Clearly, 
the degradation of type I collagen in the adult depends 
critically on the presence of a functional collagenase cleav- 
age site between Gly775 and Ile776. In contrast, cleavage at 
the newly defined N-telopeptide site by rat collagenase or 
another, as yet unidentified proteinase, may be sufficient 
for collagen degradation during embryonic development 
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and in the young adult. It is interesting to note that the al- 
terations in the skin of mutant mice resemble those seen in 
the skin of patients with scleroderma (thickening of the 
dermis and accumulation of irregular collagen fibers; ref- 
erences 32, 39). This raises the possibility that mutations at 
the collagenase cleavage site of type I collagen contribute 
to the dermal fibrosis in some patients with scleroderma. 

The second major defect caused by the mutant collagen 
became evident in the impaired reproductive ability of 
mutant females. In mammals, the uterine collagen mass 
changes considerably during pregnancy and postpartum 
involution (16, 17, 33, 55). In mice, the total uterine col- 
lagen mass increases up to 20-fold during pregnancy, and 
after parturition the uterus rapidly recovers to prepreg- 
nant size. This postpartum involution is accomplished 
within the first two days after giving birth and involves 
transcriptional activation of the collagenase gene and in- 
creased release of collagenase extracellularly followed by 
the massive degradation of most of the collagen deposited 
in the uterus within a few days (44, 45). In mutant females, 
degradation of collagen was severely disturbed, leading to 
the accumulation of nodules in the uterine wall. These 
nodules consisted of large collagen aggregations, reflecting 
the impaired collagen degradation during the postpartum 
period. The maintenance of a high collagen content in the 
postpartum uterus is presumably responsible for the re- 
duced number of litters and decreased litter size of mutant 
females. Our results suggest that the massive degradation 
of collagen at the time of parturition is critically depen- 
dent on the presence of a functional cleavage site between 
Gly775 and Ile776. Our observations that there is a diffuse as 
well as nodular pattern to the collagen deposition in the 
mutant postpartum uterus suggests that the intensity of 
the normal resorptive process initiated at the time of par- 
turition is not uniform throughout the uterus. 

A third manifestation of the mutation was seen in bone 
remodeling. Preliminary observations suggest that, while 
overall bone development was normal in Collal  tin1 J~ 
mice, deformities of the tibia and increased deposition of 
trabecular and cortical bone in femurs and tibias were fre- 
quent after the age of 6 too, suggesting that bone remodel- 
ing may also be affected (unpublished observations). 

Type I Collagen Degradation Is Initiated at Two 
Distinct Cleavage Sites 

The discovery of a novel cleavage site recognized by the 
rat fibroblast collagenase but not the known human, bo- 
vine, porcine or rabbit enzymes provides new insights into 
the mechanisms of collagen turnover in development and 
disease (summarized in Fig. 7). Previously it was thought 
that the major mechanism of degradation of native col- 
lagen involves cleavage between Gly775 and Ile or Leu776, a 
highly conserved sequence recognized by all interstitial 
collagenases. We have shown here that rat collagenase 
cleaves, in addition, the type I heterotfimer in the N-telo- 
peptide region of the a 1(I) chain between a Gly-Val bond 
four residues before the sequence Gly-Pro-Met, the first 
triplet of the major collagen helix. Consistent with this 
specificity is the observation that several collagenases 
cleave a variety of susceptible peptide bonds in noncollag- 
enous proteins, including a Gly-Val bond in the human 

al(1) 
a l ( l )  ° - °  ~ . .  " ~ . -  " "  . .  " ~  . 

a 2 ( D  

SOME ~ ALL COLLAGENASES ~ COLLAGENASES 
775 776  

G I ¥  P r o  G l n  G l l v  Z l a  A l a  G I ¥  G i n  lta~g 

G l y  P r o  G i n  G l y  L e u  L e u  G l y  A l a  P r o  

Ly e  S e z  A r g  G 1 y  V a l  S I r  V a l  P r o  G1F P r o  Met 
-5 -4 1 

Figure 7. Proposed scheme for collagenase cleavage of type I col- 
lagen. Type I collagen is a helical trimeric molecule consisting of 
two al(I) chains and one a2(I) chain. The position of interchain 
crosslinks that involve modified Lys side chains, at residue -5, in 
the N-telopeptide region between the etl(I) chains or between 
one cd(I) chain and the ~2(I) chain is indicated. These modified 
Lys residues would also be involved in intermolecular crosslinks 
in collagen fibrils and fibers. Degradation of type I collagen re- 
quires the cleavage by collagenases at defined sites in the mole- 
cule. All collagenases so far described recognize a cleavage site in 
the helical portion of the molecule, as shown, between amino 
acid residues 775 and 776. Some collagenases, such as the rodent 
fibroblast collagenases, recognize an additional site in the N-telo- 
peptide region and would cleave between the Gly at residue -5 
and Val at -4  as demonstrated in this report (Fig. 6). 

pregnancy zone protein (8, 46). Proteinases, including 
metalloproteinases other than the collagenases so far de- 
scribed (see below), might also function in the degradation 
of collagen by cleaving the proteins in the nonhelical do- 
mains. For example, stromelysin has been shown to cleave 
another interstitial collagen, type II collagen, at sites in the 
N-telopeptide region (61). 

The novel cleavage site recognized by the rodent en- 
zyme would have been difficult to detect using the wild- 
type type I collagen as a substrate. In our experiments, the 
use of animal tissues which contain crosslinked collagen as 
a source of mutant collagen facilitated the identification of 
the novel cleavage site. Digestion of wild-type but not the 
mutant type I collagen by the human enzyme cleaved the 
[31,1 and [31.z cross-linked dimers to the A 131'1 and A ~1,2 
products. In contrast, the rodent enzyme, cleaving COOH- 
terminal to the cross-link, further digested the A ~a,1 and 
A ~1,2 dimers to A =1 and A ~2 and cleaved [31,1 and [31,2 
from mutant mice to fragments comigrating with al  (I) and 
a2(I) chains (Fig. 5). In previous studies with rat collage- 
nase, the NHz-terminal cleavage site was not detected 
since the substrate used contains little crosslinked collagen 
and the digestion did not reach completion (42, 51). 

While our studies were in progress, the mouse fibroblast 
eollagenase gene was cloned and sequenced (21). Se- 
quence comparison of the mouse and rat collagenases re- 
vealed 97% identity at the amino acid level whereas both 
differ significantly from the human neutrophil and fibro- 
blast collagenases as well as the porcine, rabbit and bovine 
fibroblast enzymes (52-53% amino acid sequence identity, 
references 14, 19, 53). Recently, we have found that mouse 
collagenase, similar to the rat enzyme, cleaves type I col- 
lagen at the NHz-terminal site (Krane, S., M. Byrne, Y. 
Eeckhout, P. Henriet, V. Lemaitre, X. Liu, H. Wu, R. Jae- 
nisch, manuscript in preparation) suggesting that the ro- 
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dent enzymes represent a class of collagenases with differ- 
ent specificities than those of the previously characterized 
mammalian enzymes. It has just been reported that during 
murine embryonic development, expression of this colla- 
genase is not detected by in situ hybridization until 
E15(31). At that time expression is limited to cells in the 
developing skeleton such as hypertrophic chondrocytes, 
osteoblasts and endothelial cells. In view of these findings 
and those described in this paper, the action of other pro- 
teinases must also be necessary for the soft tissue remodel- 
ing during embryonic growth. A new enzyme with 86% 
amino acid sequence identity to the rodent collagenases 
has recently been cloned from a human breast carcinoma 
library (13). This enzyme likely represents a human homo- 
logue of the rodent enzymes and would therefore be ex- 
pected to cleave type I collagen at the NHz-terminal as 
well as the helical sites. Another enzyme, the human 72- 
kD gelatinase (type IV collagenase), has been shown re- 
cently to cleave helical collagens at the s a m e  Gly775/Leu776 
locus as the collagenases if the preparations are free of 
TIMP (1). It is not yet known whether this enzyme could 
cleave in the N-telopeptide region. Therefore, the en- 
zymes that are responsible for the collagen resorption dur- 
ing embryonic remodeling remain to be determined. The 
normal development of the mutant mice to adulthood sug- 
gests that cleavage at the NH2-terminal site is one possibil- 
ity to account for normal type I collagen degradation dur- 
ing embryogenesis and early adulthood. The pathological 
changes seen in older animals, however, suggest that 
cleavage between Gly775 and Ile776 is essential for rapid 
collagen turnover in the adult. 

The phenotype of the mice has some resemblance to hu- 
man scleroderma. It will therefore be of major interest to 
investigate whether similar mutations around the helical 
collagenase cleavage site occur in humans. It is also impor- 
tant to establish the role of the novel N-telopeptide cleav- 
age during embryogenesis and postnatal life. Mice carry- 
ing mutations at this site should provide an excellent tool 
for further investigating type I collagen turnover in physi- 
ological and pathological remodeling of the extracellular 
matrix during embryogenesis and adulthood. 
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