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ABSTRACT We can see at light intensities much lower than an average of one photon per rod photoreceptor, demonstrating
that rods must be able to transmit a signal after absorption of a single photon. However, activation of one rhodopsin molecule
(Rh*) hyperpolarizes a mammalian rod by just 1 mV. Based on the properties of the voltage-dependent Ca21 channel and data
on [Ca21] in the rod synaptic terminal, the 1 mV hyperpolarization should reduce the rate of release of quanta of neuro-
transmitter by only ;20%. If quantal release were Poisson, the distributions of quantal count in the dark and in response to one
Rh* would overlap greatly. Depending on the threshold quantal count, the overlap would generate too frequent false positives in
the dark, too few true positives in response to one Rh*, or both. Therefore, quantal release must be regular, giving narrower
distributions of quantal count that overlap less. We model regular release as an Erlang process, essentially a mechanism that
counts many Poisson events before release of a quantum of neurotransmitter. The combination of appropriately narrow
distributions of quantal count and a suitable threshold can give few false positives and appropriate (e.g., 35%) efficiency for
one Rh*.

INTRODUCTION

Human observers are able to detect a very small number of

photons and can see at light intensities much lower than an

average of one photon per rod, demonstrating that rods must

be able to transmit a signal after absorption of a single photon

(1,2,3–5). However, the efficiency of transmission of single-

photon events from rod to rod bipolar cell may be limited

by noise of several sorts. For example, in primate the

continuous voltage noise in a rod, 60.2 mV, is significant

when compared with the 1-mV (peak) hyperpolarization due

to activation of a rhodopsin molecule (Rh*) after absorp-

tion of one photon (6,7). There is mounting physiological

evidence for a thresholding nonlinearity that could block this

noise from reaching the rod bipolar cell (8–10), as first

posited by Baylor, Nunn, and Schnapf (11) and van Rossum

and Smith (12). Such a threshold would also block some of

the photon signals, reducing the efficiency of transmission to

,100% (8).

The efficiency of transmission is also limited by the small

number of quanta of neurotransmitter that convey the signal

from a rod to a rod bipolar cell dendrite within the integration

time of the rod bipolar cell, particularly if the process for

release of quanta were Poisson (13), as it is believed to be

in most synapses (14–20). (In this article, ‘‘quantum’’ (Q)

refers to one synaptic vesicle’s worth of neurotransmitter,

whereas ‘‘photon’’ refers to light.) To illustrate the problem,

we assume that the integration time is ;0.1 s. Under the

assumptions that the release process is Poisson and that the

quantal release rate in the dark (Qrate,dark) is 100 quanta/sec

(100 Q s�1) (12,21), the quantal count (Qcount) within a 0.1-s

epoch would be 106
ffiffiffiffiffi
10

p
Q (mean 6 1 SD) (Fig. 1 A).

Under the further assumption that shutdown of quantal

release is the signal for absorption of a photon, then one

epoch out of 20,000 (or once every 2000 s) would have

a Qcount of 0 Q and would represent a rare ‘‘false positive’’

(12,21). A ‘‘quantal threshold’’ higher than 0 Q would have

more frequent false positives.

However, we start with the calculation that a 1 mV

hyperpolarization would not shut off quantal release (22) but

would instead reduce Qrate by a small amount, for example,

from 100 to 80 Q s�1. This calculation follows from the

assumption that the ratio of open to closed voltage-gated Ca

channels follows a Boltzmann distribution with ;5 gating

charges (23–26). If the release process were Poisson, then the

rod bipolar cell dendrite would have the impossible task of

efficiently discriminating 106
ffiffiffiffiffi
10

p
Q from 86

ffiffiffi
8

p
Q (Fig.

1 B). We therefore propose that release of quanta of neuro-

transmitter by the presynaptic terminal of the rod is more

regular than Poisson, allowing efficient discrimination by

use of a threshold, represented by the dashed line in Fig. 1 C,

between two narrow count distributions like 10 6 0.4 Q and

8 6 0.3 Q.

METHODS

Activation of a rhodopsin molecule by absorption of one photon produces

a relatively long-lasting hyperpolarization of just ;1 mV. This hyperpo-

larization causes closure of some of the Ca21 channels in the presynaptic

terminal of the rod, a reduction in [Ca21]int, and a reduction in the rate of

release of quanta of neurotransmitter. Therefore, the first section of Methods

transforms rod voltage into quantal release rate. Rod voltage is also subject

to continuous voltage noise, a consequence of random activation of elements

of the transduction cascade. Therefore, in the second section, we calculate
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the effect of this voltage noise on quantal release rate. In that section we also

introduce a ‘‘counting window’’, biologically related to the integration time

of the quantal counter, namely, the rod bipolar cell. The resulting quantal

counts are noisy, varying from epoch to epoch as a consequence of random-

ness in the release process. Therefore, the final section of Methods presents

a method for combining the effect of continuous rod voltage noise and quan-

tal noise to generate distributions of quantal counts.

Production of an Rh* is likely to reduce quantal
release rate by �20%

For voltage-dependent channels, the ratio of the number of channels in the

open state (No) to the number in the closed state (Nc) (Eq. 1) follows

a Boltzmann distribution (modified from Eq. 2.21 of Hille (27)):

No=Nc ¼ e
�nqðV�V0Þ=kT

; (1)

where V is membrane potential, Vo is the membrane potential at which half

the channels are open and half are closed, n is the number of gating charges,

q is the charge on the electron, k is Boltzmann’s constant, T is absolute

temperature, and kT/q ¼ 26.7 mV at 37�C. For voltage-dependent channels,

including the L-type Ca channels in the rod synaptic terminal (24,25,28–34),

the number n of gating charges is typically 4–5 (23–26). Since kT/q � 25

mV, the ratio No/Nc changes e-fold for corresponding changes of voltage of

5 mV to 6 mV.

It follows that the fraction of all channels that are in the open state is

No=ðNo 1NcÞ ¼ 1=ð11 e
nqðV�V0Þ=kTÞ: (2)

From this equation, with an e-fold change in this fraction for 5 mV (n¼ 5.35

gating charges) and Vo ¼ �27 mV (within the range reported in Corey et al.

(24)), the fraction of channels that are open No/(No 1 Nc) as a function of

voltage is small at the �37-mV resting potential of the rod (23) and follows

the S-shaped Boltzmann curve (dotted line) in Fig. 2 A.

A single exponential (Eq. 3), shown by the solid curve in Fig. 2 A, well

approximates the Boltzmann curve in the region from �40 to �35 mV. The

box in that region of Fig. 2 A is expanded in Fig. 2 B.

No=ðNo 1NcÞ � No ¼ ke
ðV�V0Þ=5Þ

: (3)

In this equation, V0 is the same as above, �27 mV, and the scaling factor k is

0.12.

The effect of a hyperpolarization is to reduce the number of open chan-

nels, which reduces inward Ca21 current and [Ca21]int. The dashed curve in

Fig. 2, A and B, is a graph of the equation for [Ca21]int as a function of

membrane potential from Fig. 4 of Rieke and Schwartz (25). Within the

range �30 mV to �40 mV, these investigators found that [Ca21]int was

reduced by ;20% for a 1-mV hyperpolarization. [Ca21]int closely follows

the number of open channels given by the Boltzmann distribution and the

exponential approximation in Fig. 2, A and B.

The rate of quantal release (Qrate) closely follows [Ca21]int in rod

terminals (25,26,28–31), approximately linearly (35,36). Therefore, at the

foot of the curve, we can use a single exponential to compute the mean Qrate

as follows:

MeanQrate ¼ 100 eðDV=5Þ
: (4)

We set the coefficient in this equation to 100 to give a Qrate of 100 Q s�1

in the dark when the departure from resting potential (DV) equals 0, that is, at

the resting potential of �37 mV, and we make Qrate change e-fold for a DV
of 5 mV (Fig. 2 C). (A rate of 100 Q s�1 was suggested by calculations in

Van Rossum and Smith (12) and Rao-Mirotznik (21).) With two active zones

or ‘‘ribbon synaptic units’’ in each rod (37), this rate for each active zone, 50

Q s�1, is similar to that measured for salamander rod terminals, 400 Q s�1

(25) from an average of seven ribbons (38). Nonetheless, we explore Qrates

as low as 50 Q s�1 and as high as 400 Q s�1 below.) At the resting potential,

a hyperpolarization of 1 mV (DV ¼�1 mV) would reduce Qrate from 100 to

81.87 Q s�1, a decrement of ;20%.

The reduction by 20% is as large as it is because the resting potential

(�37 mV) is located at the foot of the Boltzmann curve, 10 mV less than V0

(�27 mV) in Fig. 2 A. Fig. 2 D shows, as a function of resting potential, the

percent by which the number of open calcium channels would be reduced by

a 1-mV hyperpolarization. If resting potential were equal to V0, the baseline

fraction of open channels would be relatively high, 50% (Fig. 2 A), and the

percent reduction in the number of open channels due to the 1-mV

hyperpolarization would only be half as large, ;10% (Fig. 2 D).

Rod voltage noise causes variation in mean Qrate

The membrane potential in the dark exhibits continuous Gaussian voltage

noise of ;60.2 mV (7), due in part to spontaneous activation of the cGMP

FIGURE 1 Quantal noise makes discrimination difficult if production of

one activated rhodopsin (Rh*) causes a small decrement in quantal release

rate. In this figure, continuous rod voltage noise is assumed to be zero. (A)

With random (Poisson) quantal release at a rate (Qrate,dark) of 100 Q s�1, the

count of quanta (Qcount) in an epoch of 0.1 s would be 106
ffiffiffiffiffi
10

p
Q. Few

(0.005%) of the epochs would contain 0 Q. Thus, if response to produc-

tion of one Rh* were signaled by shutdown of quantal release, that is, the

threshold were set to 0 Q, the interval between false positives would be 2000

s. (B) The amount of overlap between a Poisson distribution for a mean

Qcount of 10 Q in the dark (dark bars) and 8 Q after production of one Rh*

(light bars) would make it difficult for the rod bipolar cell to distinguish

between the two states (dark, Rh*) of the rod. If the threshold were set

between the two means (9 Q), efficiency would be high, but false positives

would be very frequent. If the threshold were set very low (e.g., 0 Q), false

positives would be rare but efficiency would be very low. The dark bars are

placed just to the right of the tick mark, the light bars just to the left in Fig. 1,

B and C. (C) With regular release, a threshold count (dashed line) of 8 Q

distinguishes between the 10 Q and 8 Q distributions with high efficiency

and few false positives. A threshold of 8 Q is represented by a dashed line

between 8 Q and 9 Q to signify a ‘‘positive’’ event for #8 Q.
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phosphodiesterase in the rod (39). The dark curve in Fig. 3 A shows the

resulting probability density function (PDF) for the departure of rod voltage

from its resting potential in the dark (DV). The abscissa is in millivolts. The

ordinate is in units of probability per millivolt, and the area under each curve

is unity.

The hyperpolarization in response to activation of one rhodopsin

molecule (Rh*) in the rod outer segment lasts for ;0.5 s and reaches a re-

producible ‘‘peak’’ of �1 mV (6,7). The same continuous voltage noise is

superimposed on this hyperpolarization (Fig. 3 A, light curve). Equation 4,

providing Qrate as a function of DV (illustrated in Fig. 2 B), enables us to

transform the PDFs of DV that were shown in Fig. 3 A into the PDFs of Qrate

(Fig. 3 B). Since membrane potential in the dark is normally distributed,

mean Qrate is also distributed, ranging from 90 to 110 Q s�1 in the dark and

from 72 to 92 Q s�1 after production of one Rh*. The abscissa is in Q s�1.

The ordinate is in units of probability per Q s�1, and the area under each

curve is unity.

Physiological and psychophysical studies suggest that the rod path-

way accumulates photons over a finite period, on the order of 0.1 s. (For

psychophysical evidence, see Hood and Finkelstein (1), Graham and

Margaria (40), Barlow (41), Sperling and Jolliffe (42), and Baumgardt and

Hillmann (43). For electroretinographic evidence, see Fig. 6 of Robson and

Frishman (44). For intracellular electrophysiological evidence, see Fig. 4 A

of Field and Rieke (8).) Therefore, for most of this article, we adopt the

value 0.1 s for the ‘‘counting window’’ (or ‘‘epoch’’). (We show later that its

precise duration is not critical for our findings.) Because the bulk of the

power in voltage noise is contained in frequencies under 3 Hz and because

the peak response to a photon is not brief (6,7,11), we can treat DV in the rod

as if it were a single value over this 0.1-s counting window. In addition, the

approximately linear dependence of quantal release rate on [Ca21]int (35,36),

the presence of L-type Ca21-channels in the terminal, and the bandpass

(1.5–4 Hz) nature of quantal release by the rod terminal (35) permit us to

discount transients, and we can treat Qrate as a single value over the 0.1-s

counting window.

We define a parameter M in the subsection titled Grouped Poisson

number distribution: Erlang process in Appendix A. But for a small

correction, M can be thought of as the mean count of Erlang Events, or

quanta in this case. (In fact, the value of M is slightly greater than the mean.

(See Appendix Eqs. A8 and A9.))

We can calculate M for any DV as the product of 0.1 s and the Qrate

associated with that DV, the latter shown in Fig. 2 B. For example, in that

figure, at DV ¼ �0.3 mV, the mean Qrate is 94.2 Q s�1, so M is 9.42 Q.

We can also calculate the PDF of M. We do so by taking the product of

0.1 s and the PDF of the mean Qrate (Fig. 3 B), giving ranges of M of 9–11 Q

in the dark and 7–9 Q after production of one Rh* (Fig. 3 C). The abscissa is

in quanta. The ordinate is in units of probability per quantum, and the area

under each curve is unity.

The Qcount distribution depends on quantal noise
as well as continuous rod voltage noise

The preceding section takes continuous rod voltage noise into account. Here,

we take quantal noise, the variation in the count of quanta between epochs

due to stochastic release, into account as well. For a Poisson process, events

occur at some mean rate (a events s�1) but at random times (Fig. 4, A and B,

left panels), as described in detail in Appendix A. The mean time between

events is equal to 1/a s, and the SD of the interval distribution is equal to this

mean, thus also 1/a s. If a ¼ 100 events s�1, for example, the mean interval

FIGURE 2 A 1-mV hyperpolarization should modestly reduce quantal release rate. (A) Based on a Boltzmann distribution with five gating charges (Eq. 2),

the dotted S-shaped curve shows the fraction of L-type Ca channels that are open as a function of voltage. The solid curve shows a single exponential (Eq. 3)

that approximates the Boltzmann distribution over the range �40 to �35 mV. The dashed curve shows [Ca21]int in the synaptic terminal of a rod from an

equation provided by Rieke and Schwartz (25) to fit the data in their Fig. 4. For their equation, ½Ca11�int ¼ C0 3 e½ðV�V0Þ=B�1C1: [Ca21]int is in micromoles,

and the parameters C0 ¼ 62 mM, C1 ¼ 0.5 mM, and B¼ 4 mV are supplied by the authors. V0 ¼�27 mV is omitted by the authors and estimated by us. (B) An

enlarged version of the boxed region in Fig. 2 A. (C) Mean quantal release rate (Qrate), a function of membrane potential, is computed with a single exponential

(Eq. 4), a scaled version of the solid curve in A. (D) Based on the Boltzmann distribution, the greatest percent reduction in the number of open calcium channels

No and thus Qrate for a 1-mV hyperpolarization is achieved if the membrane potential in the dark is at the foot of the dotted curve in A.
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and the SD of the interval distribution both equal 0.01 s (or 10 ms). For

Poisson release, each event represents release of a quantum of neurotrans-

mitter.

We use an ordinary Erlang renewal process to model regular release.

In that case, each Erlang Event represents release of a quantum of neuro-

transmitter. Erlang Events of order r occur at some mean rate (m Erlang

Events s�1), with each Erlang Event declared at the rth Poisson event. (A

first-order Erlang process is a Poisson process.) Thus, the mean interval

between Erlang Events is r times as long (r/a) as the mean interval (1/a)

between Poisson events, but the SD of the interval distribution increases by

a smaller factor,
ffiffi
r

p
, to become

ffiffi
r

p
=a (Fig. 4 C).

We use N to denote the narrowing of the interval distribution, that is, the

reduction of its SD relative to the mean, so N ¼
ffiffiffiffiffiffiffi
1=r

p
. For example, if m ¼

100 25th-order Erlang Events s�1, based on a ¼ 2500 underlying Poisson

events s�1, the mean time between Erlang Events is 0.01 s (or 10 ms), and

the SD of the interval distribution for these 25th-order Erlang Events is that

of a first-order process at 100 Poisson events s�1 (0.01 s) multiplied by the

factor N ¼
ffiffiffiffiffiffiffiffiffiffi
1=25

p
¼ 0:2 to become 0.002 s (Fig. 4, A and B, right panels).

For a Poisson process, the mean count (l) within some window T equals

aT Poisson events, and the SD of the Poisson count distribution equals
ffiffiffi
l

p

Poisson events. Thus, for a counting window of 0.1 s and a rate of 100

Poisson events s�1, the mean count is 10 Poisson events, and the SD of the

count distribution is
ffiffiffiffiffi
10

p
Poisson events.

For an ordinary Erlang process, the parameter M is equal to aT=r. The

mean count of Erlang Events is slightly less than M (Eq. A9); for a high-

order Erlang process, the shortfall approaches 0.5 Erlang Events. The SD of

this ‘‘Grouped Poisson’’ count distribution is approximately narrowed (that

is, reduced) by the factor
ffiffiffiffiffiffiffi
1=r

p
(Fig. 4 D). For example, for a counting

window of 0.1 s, a rate of 2500 underlying Poisson events s�1, and an Erlang

Event declared every 25th Poisson event, M ¼ 10 Erlang Events, and the

mean count (9.52 Erlang Events) is close to 0.5 less than 10. In this case the

SD of the count distribution is reduced approximately by the factor N ¼ 0.2

to become 0:2
ffiffiffiffiffi
10

p
Erlang Events.

The order r can be noninteger, in which case the process is called

a gamma process. The count distribution may still be described as a Grouped

Poisson distribution (Appendix A).

With these definitions in hand, the following description focuses initially

on the situation in the dark. Because release is stochastic, the actual count of

quanta (Qcount) for a single M varies from epoch to epoch. Examples of

Poisson event streams and counts within an epoch are shown in the left panel

of Fig. 4 A for M ¼ 10 Q and r ¼ 1. The Qcount ranges from 6 to 12 Q.

Examples of Erlang Event streams are shown in the right panel of Fig. 4 A

for M ¼ 10 Q and more regular release (r ¼ 25; N ¼ 0.2). The Qcount ranges

from 9 to 10 Q. In addition, examples of increasingly narrow count

distributions for M ¼ 10 Q and orders r ¼ 1, 9, 25, and 100 are shown in

Fig. 4 D. These distributions are discrete because numbers of quanta are

integers.

Because M depends on DV, which varies due to continuous rod voltage

noise, M itself varies from epoch to epoch (Fig. 3 C). Therefore, to compute

the discrete probability distribution of quantal count (‘‘Qcount distribution’’),

we convolve the PDF of DV with the discrete probability distribution of

quantal counts for the M associated with each DV (Fig. 5, A and B).

To ease the subsequent computational load, we sample the PDF of DV,

the dark curve in Fig. 3 A, every 0.05 mV, so the units on the z axis for the

left walls of Fig. 5, A and B, are probability/0.05 mV, and the points on that

wall are a discretized and scaled version of the dark curve in Fig. 3 A. (The

scaling is by 20 times to give a sum of probabilities over DV equal to unity.)

For example, the probability/0.05 mV that DV¼�0.3 mV is 0.0324, that is,

the product of 0.648 mV�1 (Fig. 3 A) and 0.05 mV, as illustrated by the short

black vertical bar on the left wall of Fig. 5 A.

We can associate the probability of each DV on the left wall of Fig. 5 A

with its corresponding M, computed as the product of Qrate as a function of

DV (Eq. 4 and Fig. 2 B) and the counting window 0.1 s. At DV¼ 0.3 mV, for

example, the mean Qrate is 94.2 Q s�1 (Fig. 2 B). Multiplying by 0.1 s gives

an M of 9.42 Q.

For each DV, based on the associated M, we compute the discrete

distribution of quantal count—a Grouped Poisson distribution—from

Appendix Eq. A9 (though in practice we use Appendix Eqs. A10 or A11).

For example, for DV ¼ �0.3 mV in Fig. 5 A, we compute the discrete

distribution of quantal counts forM¼ 9.42 Q and order r¼ 1. We then weight

that distribution by the probability of occurrence of that DV (e.g., 0.0324). To

illustrate this step, the strip of solid boxes running parallel to the abscissa in

Fig. 5 A at DV¼�0.3 mV represents the product of 0.0324 and the Grouped

Poisson distribution, with one box for each integer number of quanta (e.g.,

8 Q). (The z axis on the right applies to these weighted probabilities.) We carry

out these steps for DV from �2 mV to 12 mV at intervals of 0.05 mV.

Finally, we sum the weighted probabilities for each number of quanta

(e.g., 8 Q) for every DV from �2 mV to 12 mV, as illustrated by the strip of

boxes with black-outlined tops that runs parallel to the DV axis for 8 Q in

Fig. 5 A. The tall distribution at the back of Fig. 5 A gives these sums and

represents the Qcount distribution in the dark, taking into account both rod

voltage noise and a Poisson release process (Erlang order r ¼ 1).

Fig. 5 B illustrates the results for a more regular release process with order

r ¼ 25. The weighting factors in the left wall, the result of continuous rod

voltage noise, are the same as those in Fig. 5 A, but the Qcount distribution for

any particular DV is much narrower, and the resulting Qcount distribution at

the back is much narrower.

FIGURE 3 Probability distribution of rod voltage (DV) can be transformed

into probability distributions of Qrate and Qcount. (A) Probability density

functions (PDFs) of rod voltage DV in the dark and after production of one

Rh* reflect Gaussian noise (SD ¼ 0.2 mV) and are centered at DV¼ 0.0 mV

and �1.0 mV, respectively. (B) PDFs of mean Qrate are calculated from mean

Qrate as a function of rod voltage DV (Fig. 2 B; Eq. 4) and the PDFs of rod

voltage DV in A. (C) PDFs of M are calculated as the product of mean Qrate

from B and the duration of the counting window, assumed here to be 0.1 s.
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We can compute the Qcount distribution after production of one Rh* by

the same methods, except that we carry out the steps for DV in the range from

�3 mV to 11 mV, centered at �1 mV, and we weight those discrete

Grouped Poisson distributions by the probability of occurrence of each DV.

Similar to what is described above, the latter is a discretized version of the

light curve in Fig. 3 A, sampled every 0.05 mV.

RESULTS

Rod voltage noise may contribute much less than quantal

noise to broadening Qcount distributions. The shaded bars in

the histogram in Fig. 6 A show the Qcount distribution in the

dark, taken from the back of Fig. 5 A, which was computed

for physiological rod voltage noise of 60.2 mV and Poisson

release (Erlang order r ¼ 1, hence N ¼ 1). The open bars in

the histogram show the distribution computed for rod voltage

noise of zero. The difference between the two histograms

is barely perceptible. Indeed, physiological voltage noise

increases the SD of the Qcount distribution from 3.16 Q to

3.19 Q, a factor of just 1.01.

The shaded bars in the histogram in Fig. 6 B show the

Qcount distribution in the dark, taken from the back of Fig.

FIGURE 5 Distribution of Qcount in

the dark may be computed by convolv-

ing voltage noise with quantal noise.

The points on the left wall (yz plane)

represent the probability distribution

(probability/0.05 mV) of membrane

potential DV in the dark (y axis). The

points provide a discretized version of

Fig. 3 A (dark curve), scaled by 20 to

sum to unity. EachDV is associated with

a value of M, the product of mean Qrate

as a function of DV (Fig. 2 B) and 0.1 s.

For each DV, the associated M deter-

mines a grouped Poisson distribution of

Qcount, rows of boxes parallel to the x

axis, and each of these Qcount distribu-

tions is weighted by the probability of

its associated DV. Finally, all of the

weighted probabilities for a given

Qcount, rows of boxes parallel to the y

axis are summed to produce the Qcount

distribution incorporating voltage noise and quantal noise at the back panel. (A) The distribution of Qcount for rod voltage noise ¼60.2 mV and Poisson release

process (Erlang order r ¼ 1). (B) The distribution of Qcount for rod voltage noise ¼ 60.2 mV and regular release process (r ¼ 25).

FIGURE 4 Distributions of intervals and

counts within an epoch narrow as the order of

an Erlang ordinary renewal process rises. (A)

After an Erlang Event at time 0� (not shown),

Erlang Events arrive at random times that depend

on the rate (100 Erlang Events s�1) and order r of

the renewal process. The order r equals 1

(Poisson) for the five 0.1 s sequences on the

left, corresponding to a narrowing N of 1. The

order r equals 25 for the five sequences on the

right, corresponding to a narrowing N of 0.2. The

count in 0.1 s is listed to the right of each

sequence. To maintain the same 10 ms mean

interval between Erlang Events, the rate of

underlying Poisson events a is the product of

the rate of Erlang Events (e.g., 100 Erlang Events

s�1) and order r (e.g., 25 underlying Poisson

events/Erlang Event), giving 2500 Poisson

events s�1. (B) The sequences are as described

for A, except that the rate of Erlang Events is 80

Erlang Events s�1. (C) Continuous distributions

of intervals for an Erlang renewal process with

a rate of 100 Erlang Events s�1 and with several

order r from 1 to 100. The intervals for a Poisson process (r ¼ 1) are exponentially distributed. The narrowing N, the reciprocal of the square root of r, is also

equal to the coefficient of variation of the distribution. (This figure follows Fig. 10.3 of Wickens (106).) (D) Discrete distribution of numbers of Erlang Events

within a 0.1-s window for an ordinary Erlang renewal process with a rate of 100 Erlang Events s�1 and with several orders r from 1 to 100.
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5 B, which was computed for physiological rod voltage noise

of 60.2 mV and more regular release (r ¼ 25, hence N ¼
0.2). The increase in SD over quantal noise alone (open
bars), from 0.71 to 0.82 Q, is by a factor of only 1.16. For the

same degree of regularity, a larger, nonphysiological amount

of rod voltage noise, like 60.4 mV (Fig. 6 C), is required to

significantly increase the SD, from 0.71 to 1.10 Q, a factor of

1.55.

In the above descriptions, continuous rod voltage noise is

expressed in units of millivolts, whereas quantal noise, the

SD of a Qcount distribution, is expressed in units of quanta. In

Appendix B, we show how to express continuous rod

voltage noise in quanta and, conversely, how to express

quantal noise in millivolts (Fig. 7 A). The conversion factor

is close to 2 Q mV�1. This analysis shows that the quantal

noise associated with Poisson release and a mean Qcount of 10

Q is 61.54 mV, obviously swamping the physiological 60.2

mV of continuous rod voltage noise (Appendix B). Total

noise, the square root of the sum of the squares of quantal

noise and continuous rod voltage noise (Fig. 7 B, Eq. B1), is

slightly increased by 60.2 mV of continuous rod voltage

noise, from 61.54 to 61.55 mV.

FIGURE 6 Quantal noise overwhelms physiological rod voltage noise in

determining the probability distribution of Qcount. (A) For Poisson quantal

release (Erlang order r ¼ 1, N ¼ 1), the distribution of Qcount with

physiological (60.2 mV) rod voltage noise (shaded bars), computed using

the convolution described in Fig. 5 A, is compared with the distribution

without noise (open bars). The shaded bars are placed just to the left of the

tick marks, the open bars just to the right in all parts of the figure. The SD of

the distribution with 0 mV voltage noise ¼ 3.16 Q, and with 60.2 mV

voltage noise ¼ 3.19 Q. (B) For regular quantal release (r¼ 25, N¼ 0.2), the

distribution of Qcount with physiological (60.2 mV) rod voltage noise

(shaded bars), computed using the convolution described in Fig. 5 B, may be

compared with the distribution without noise. The SD of the distribution

with 0 mV voltage noise ¼ 0.71 Q, with 60.2 mV voltage noise ¼ 0.82 Q.

(C) For regular quantal release (r ¼ 25, N ¼ 0.2), the distribution of Qcount

with nonphysiological (60.4 mV) rod voltage noise (shaded bars) may be

compared with the distribution without noise. For the distribution with 0 mV

voltage noise SD ¼ 0.71 Q, and with 60.2 mV voltage noise, SD ¼ 1.10 Q.

FIGURE 7 Continuous rod voltage noise, quantal noise, and total noise

may be expressed in units of voltage or in units of quanta. (A) Rod voltage

noise in millivolts (RVNV) is equal to the SD of the PDF of membrane

potential. Conversion to rod voltage noise in units of quanta (RVNQ) relies

on the independence of rod voltage noise and quantal noise (Eq. B1 in

Appendix B). Each measurement of RVNQ is obtained from the SD of

a Qcount distribution with a mean of 10 Q. As expected, the conversion factor

(Q/mV) is essentially independent of the degree of quantal noise (N ¼ 1 (¤)

versus N ¼ 0.2 (h). (B) Total noise, a vector with quantal noise and voltage

noise components, can be measured in units of millivolts (left and top scales)

or in units of quanta (right and bottom scales). The dashed horizontal line

marks physiological voltage noise of 60.2 mV. The dotted vertical lines

mark the level of quantal noise that accompanies Poisson release (N ¼ 1)

and regular release (N ¼ 0.2).
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Appendix B also shows that quantal noise is approxi-

mately proportional to the narrowing of the Qcount distribu-

tion, hence 60.34 mV (� 0.2 3 1.54) for N¼ 0.2 and a mean

Qcount of 10 Q. Even in this case total noise is increased little,

to 60.39 mV, by the physiological level of continuous rod

voltage noise.

Based on the Qcount distribution in the dark, the
threshold number of quanta sets the rate of
false positives

The absorption of a photon by a rod produces an Rh*, which

hyperpolarizes that rod, reduces its Qrate, and reduces the

number of quanta counted by the rod bipolar dendrite. A

reduction to or below some ‘‘threshold’’ integer number of

quanta (QT) after absorption of a photon constitutes a signal

that an Rh* was produced, a ‘‘true positive’’. (In our treat-

ment, a spontaneous isomerization of rhodopsin, producing

an Rh*, is also a true positive.) Conversely, a reduction to or

below QT in the absence of an Rh* constitutes a ‘‘false

positive’’. False positives occur because of random fluctua-

tions in Qcount due to continuous rod voltage noise and

quantal noise.

The rate of spontaneous production of an Rh* has been

measured in rods (11,45) and inferred from electrophysio-

logical recordings of ganglion cells (46,47). Spontaneous

production of an Rh* is believed to occur once every ;160 s

in each rod (11) and may account for the psychophysical

‘‘dark light’’, a background ‘‘light’’ that sets the visual

threshold in complete darkness (48,49). Therefore, in order

that random fluctuations in Qcount due to continuous rod

voltage noise and quantal noise not add appreciably to the

rate of false positives due to spontaneous production of an

Rh*, we set conditions (threshold QT, Erlang order r, and

Qrate,dark) to give a 1600 s interval between random fluc-

tuations in Qcount that fall to or below QT, that is, 10 times

longer than 160 s. We note that once in 1600 s is also equal to

once in every 16,000 epochs of 0.1 s.

This choice (an interval of 1600 s between these additional

false positives) is admittedly arbitrary, but we show below

that the qualitative findings change little if we use an interval

between these additional false positives from as low as 200 s

to as high as 3200 s. We use the phrase ‘‘dark noise interval’’

to refer to the interval between these false positives that are

due to quantal noise and continuous rod voltage noise. This

phrase specifically does not refer to the interval between

spontaneous Rh* events.

We set QT to generate false positives at the desired

interval, for example, once in 16,000 epochs (1600 s). Fig.

8 A shows two Qcount distributions, the one with dark bars

representing Poisson release in the dark, the other with light

bars representing Poisson release after production of one

Rh*. If QT were 9 Q, then the sum of the probabilities given

by the solid bars for # 9 Q, 0.458, would represent false

positives due primarily to quantal noise and secondarily to

continuous rod voltage noise. In this case, false positives

would occur in 45.8% of the epochs, that is, once in every 2.2

epochs, or once in every 0.22 s. This dark noise interval is far

too short, ;10,000 times shorter than 1600 s.

Clearly, the threshold QT must be lower. If it were 8 Q,

then the sum of the probabilities given by the dark bars for

# 8 Q would yield dark noise intervals of 0.30 s between

false positives, still not long enough. Even a QT of 1 Q would

give a dark noise interval of 189 s. In this case, a QT of 0 Q

FIGURE 8 More regular quantal release (lower N, higher r) reduces the

overlap between the Qcount distributions for darkness and for one Rh* and

increases efficiency. Dark bars represent the distribution of Qcount in the dark

with a Qrate,dark of 100 Q s�1 and an M of 10 Q. Light bars represent the

distribution ofQcount after production of one Rh* with aQrate,Rh* of 81.9 Q s�1

and anM of 8.19 Q. The dark bars are placed just to the right of the tick marks,

the light bars just to the left. The distributions of Qcount are computed by

convolution (Fig. 5) for physiological (60.2) rod voltage noise and release

processes of several different N. The N have been set for the dark distribu-

tions to give one false positive in 16,000 epochs of 0.1 s for a quantal

threshold QT (dashed vertical lines) of (A) 0 Q, (B) 5 Q, (C) 6 Q, and

(D) 7 Q.
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would be required to obtain a dark noise interval of 2052 s,

close to the target 1600 s. Thus, to determine QT, we begin

with the interval between false positives (e.g., 1600 s), con-

vert that rate into a probability per epoch (e.g., 1/16,000),

and then consult the Qcount distribution in the dark—and only

that distribution—to determine this threshold number of

quanta.

Regular release improves efficiency

Upon production of an Rh*, the mean release rate would fall

to 81.9 Q s�1 (Fig. 2 B), and the distribution of counts (Fig. 8

A, light bars) in 0.1 s would be broad, 8.19 Q 6 2.88 Q. With

a QT of 1 Q, the probability given by the sum of the

probabilities represented by the open bars for 1 Q or fewer

would be exceedingly low, just 0.26%. This value, the per-

cent of Rh* produced that would be counted as true posi-

tives by a perfect counter of quanta of neurotransmitter, is the

‘‘efficiency’’. With a QT of 0 Q, the efficiency would be

given by the probability shown by the light bar for 0 Q alone

and would be even lower, just 0.029%.

A more regular release process would narrow the con-

tinuous distribution of intervals between quantal release

events and the discrete distribution of counts in an epoch. For

example, if gamma order r of the release process was 8.55

and Qrate,dark was 100 Q s�1, the sum of the probabilities

given by the dark bars for Qcount # QT (representing false

positives) would be 1 in 16,000 epochs for a QT of 5 Q

(Fig. 8 B). The narrowing of the distribution of intervals,

N ¼ 1=
ffiffi
r

p
, would be 0.341. The same dark noise interval

could also be achieved with QT ¼ 6 Q and a correspondingly

higher order release process (r¼ 18.11,N¼ 0.235) (Fig. 8 C)

or with QT ¼ 7 Q and an even higher order release process

(r ¼ 66.10, N ¼ 0.123) (Fig. 8 D). The solid squares in Fig.

9 A show these data, N as a function of quantal threshold QT,

well fit by a line labelled ‘‘100’’.

A more regular release process also narrows the dis-

tribution of Qcount after production of an Rh*. Narrowing

both distributions for dark and for an Rh* reduces their

overlap and permits greater efficiency (Fig. 8). Because an N
of 0.341 (r¼ 8.58) in Fig. 8 B permits a QT of 5 Q, efficiency

is calculated from the sum of the light bars for 5 Q and fewer.

In this case, the efficiency is 1.11%. Greater regularity (N ¼
0.235, r ¼ 18.0, and N ¼ 0.123, r ¼ 66.5) permits higher

values of QT and yields higher efficiencies, 4.81% and

34.2% (Fig. 8, C and D). The solid squares in Fig. 9 B,

efficiency as a function of N, show these data connected by

the dashed curve labeled ‘‘100 Q sec�1’’.

Higher release rates permit less regular release

As was shown in Fig. 8 and by the solid squares in Fig. 9 B
for a Qrate,dark of 100 Q s�1, narrowing the distributions of

interval for quanta in the dark and after an Rh* increases

separation between the two Qcount distributions and increases

efficiency. This separation can be increased by other

methods as well. For example, we can increase the number

of samples in an epoch (Qcount) by increasing Qrate.

Therefore, we first determined the narrowing N required to

produce one false positive in 16,000 epochs from dark dis-

tributions of Qrate,dark for 50, 100, 200, and 400 Q sec�1

(Fig. 9 A). N is a linear function of QT in all cases.

Then, we determined efficiency as a function of N for

these different Qrates, dark (Fig. 9 B). As Qrate,dark increases,

a particular efficiency may be achieved with less regular

release, that is, greater N. For example, as shown by the

uppermost dotted horizontal line labeled 34.2% in Fig. 9 B,

an efficiency of 34.2% may be achieved with N ¼ 0.087,

0.123, 0.173, and 0.245 for release rates of 50, 100, 200, and

400 Q s�1. In fact, for a particular efficiency, a graph of N as

a function of the square root of Qrate,dark is a line through the

origin (Fig. 9 C). Since 1=
ffiffi
r

p
¼ N, the same data, graphed

with 1/r as a function of Qrate,dark (Fig. 9 D), is also fit by

a line through the origin (Fig. 9 D). The important conclu-

sion is that interchanging order r and Qrate,dark gives the same

efficiency, and we can generalize the efficiency results

(Fig. 9 B) to all combinations of Qrate,dark and r whose

product is the same.

Quantal thresholds QT are marked on the points in Fig. 9,

B–D. For the same 34.2% efficiency, as Qrate,dark rises from

50 to 100 to 200 to 400 Q s�1, QT rises from 3 to 7 to 15 to 31

Q. (Again, see the uppermost dotted horizontal line in

Fig. 9 B) The situation is similar for efficiencies of 4.81%

and 1.11% (see Fig. 9 B, middle and lower horizontal lines).
Indeed, for any given efficiency, threshold QT increases

linearly with Qrate,dark (Fig. 9 E).

For a Qrate,dark of 100 Q s�1, the highest efficiency is 34%

(Fig. 9 B). Not surprisingly, higher efficiencies may be

achieved with higher Qrates,dark, like 200 Q s�1 or 400 Q s�1

(Fig. 9 B). However, efficiencies .34% may also be

achieved for Qrates,dark somewhat lower than 100 Q s�1.

Consider a Qrate,dark like 95 Q s�1, yielding a mean Qcount

in 0.1 s that is 95% as great. (In that case, the appropriately

low rate of false positives must be achieved for the same QT

(7 Q) as was used with 100 Q s�1 to achieve 34.2%

efficiency by more severely narrowing the Qcount distribution

in the dark, that is, with a higher Erlang order r.) The lower

Qrate would also lower the mean Qcount for one Rh*, place

a greater percent of the Qcount distribution associated with

one Rh* at or below the QT, and thus achieve a higher

efficiency.

A longer counting window would also increase the

number of samples. Consequently, a longer counting win-

dow permits use of higher N, that is, a less regular release

process. Similar to the situation in Fig. 9 C, for any given

efficiency, N depends on the square root of the duration of

the counting window (data not shown). Also, similar to the

situation in Fig. 9 A, for any given Qrate,dark and counting

window, N is a linear function of QT (data not shown).
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FIGURE 9 Higher release rate permits quantal release with less regularity. Solid squares in all parts correspond to the standard conditions, including

a Qrate,dark of 100 Q s�1. (A) For a given Qrate,dark (50, 100, 200, and 400 Q s�1) the N that is required to give one false positive in 16,000 epochs of 0.1 s falls

linearly as we increase threshold QT by increments of 1 Q. Threshold numbers of quanta QT must be an integer, so the line that fits the points for a given

Qrate,dark is dashed, not solid. (B) For a given Qrate,dark, both threshold and efficiency rise as the narrowing N of the Qcount distribution is reduced. Small numbers

next to each point show the threshold QT for that point. QT must be a whole number of quanta, so dashed lines connect points with the same Qrate,dark, not solid

lines. For greater Qrates,dark, the relationship between efficiency and N can be seen to move upward (greater efficiency) or rightward (less regular release), the

latter emphasized by the dotted horizontal lines connecting points with the same efficiency. (C) For any particular efficiency, the N that is required is directly

proportional to the square root of Qrate,dark. The small number next to each point provides the value of QT. Threshold numbers of quanta QT must be integers, so

the line that fits the points for a given efficiency is dashed, not solid. (D) For any particular efficiency, the reciprocal of order r is directly proportional to

Qrate,dark. Threshold QT must be an integer number of quanta, so the line that fits the points for a given efficiency is dashed, not solid. (E) For any particular

efficiency, the integer value of QT rises linearly with Qrate.
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Efficiency and N are not very sensitive to dark
noise interval

To this point N has been set to give a dark noise interval (due

to continuous rod voltage noise and quantal noise of 1600 s

(cf. Fig. 9), 10 times longer than the interval between spon-

taneous production of Rh*s. A dark noise interval shorter

than 1600 s means that more total noise, generating more

frequent false positives, would be permitted. Since contin-

uous rod voltage noise is constant (60.2 mV), the increase in

total noise is achieved by an increase in quantal noise. In

other words, for any given QT, larger values of N would be

permitted for shorter dark noise intervals (Fig. 10 A). In

addition, efficiency for any given QT would be greater

(Fig. 10 B) for shorter dark noise intervals. For example, for

QT ¼ 7 Q and an interval of 3200 s, the requisite N is 0.113,

and efficiency is 33.7%. For the same QT and an interval of

200 s, the requisite N would be greater, but only slightly,

0.160, and the efficiency would be 36.2%. Thus, particularly

for a high efficiency like ;35%, requiring a high threshold

QT like 7 Q, the differences in N over wide variation in dark

noise interval are small (Fig. 10 B).

Larger decrements reduce the degree of
regularity needed

In all of the calculations thus far, we assumed an e-fold

change in the number of open Ca21 channels for 5 mV. For

the 1 mV hyperpolarization associated with production of an

Rh*, this value resulted in an 18.1% decrement in Qrate from

100 to 81.9 Q s�1 (Eq. 4) and a decrement in M from 10.0 to

8.19 Q. To explore the effect of this parameter, we con-

sidered e-fold changes for 10, 5, 3, and 2 mV, corresponding

to decrements in Qrate of 9.5%, 18.1%, 28.3%, and 39.3%.

The corresponding M for a 1-mV hyperpolarization would

fall to 9.1, 8.2, 7.2, and 6.1 Q from 10.0 Q in the dark.

Increasing the decrement beyond 18.1%, a fall from 10.0 to

8.19 Q, causes the distribution of rod voltage noise in the

dark (Fig. 3 A) to be transformed to a slightly wider dis-

tribution of Qrate (Fig. 3 B). Therefore, to maintain the dark

noise interval at 1600 s as the decrement rises, it is necessary

to reduce quantal noise (and thus N) by a small amount (Fig.

11 A).

Increasing the decrement causes a much larger separa-

tion between the Qcount distributions in the dark and after

production of an Rh*. However, regular release is still

necessary (Fig. 11 B). For example, to obtain efficiencies in

the range 35–45% (Fig. 11 B, uppermost points), for any

given QT, N rises from 0.123 to 0.227 as the decrement rises

from 18.1% to 39.4%. Conversely, reducing the decrement

to 9.5% yields less separation between the Qcount distribu-

tions. In that case, for a Qrate,dark of 100 Q s�1, no efficiency

in this range can be achieved.

DISCUSSION

Overlap between Qcount distributions in the dark
and in the light reduces efficiency

Discrimination between the ‘‘large’’ number of quanta

released by a rod within some counting window in the dark

(Qcount,dark) and the ‘‘small’’ number after production of an

Rh* (Qcount,Rh*) requires setting a ‘‘threshold’’ count (QT). If

the Qcount,dark distribution were wide, due to quantal noise

and continuous rod voltage noise, QT would have to be set

to a very low value, much lower than the mean Qcount,dark,

to avoid a high rate of false positives. For example, with

‘‘standard assumptions’’ (a Poisson quantal release process,

a Qrate,dark of 100 Q s�1, a hyperpolarization of 1 mV for one

Rh*, an e-fold change in Qrate for 5 mV, a counting window

(epoch) of 0.1 s, and continuous rod voltage noise of 60.2

mV), the bipolar dendrite would count ;10 Q in the dark,

and QT would have to be 0 Q to give an interval of ;1600 s

between false positives (Fig. 8 A).

FIGURE 10 Shorter dark noise interval permits slightly less regular

release. (A) For any given threshold QT—the small numbers associated with

each line—the narrowing N that is required to achieve any particular dark

noise interval rises linearly but not steeply as dark noise interval falls. Here

an epoch is 0.1 s, so a dark noise interval in seconds may be expressed as 10

times that number of epochs. The solid squares correspond to the standard

conditions, including a dark noise interval of 1600 s and a Qrate,dark of 100 Q

s�1. (B) Shorter dark noise intervals yield higher efficiencies for any given

threshold QT (small numbers). The points marked by solid squares for a dark

noise interval of 1600 s are the same as those in Fig. 9 B. QT must be an

integer number of quanta, so points with the same dark noise interval but

different QT are connected by a dashed line, not a solid line.
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Even this low threshold, 0 Q, would not be a problem

if quantal release were completely halted by the 1 mV hyper-

polarization that follows production of an Rh*. However, we

argue that a 1 mV hyperpolarization should reduce Qrate from

100 Q s�1 to 82 Q s�1, not to 0 Q s�1, and thus reduce mean

Qcount from 10 Q to 8.2 Q, not to 0 Q (Fig. 2). With a mean

Qcount,Rh* of 8.2 Q and Poisson quantal release, only 0.029%

of epochs after production of an Rh* would have 0 Q, giving

an efficiency of just 0.029% (Fig. 8 A).

Far more ‘‘favorable’’ assumptions would still give low

efficiencies in the face of Poisson release. For example,

although available data suggests that the conductance of the

presynaptic Ca21 channel changes e-fold for 5 mV, one

study of toad rod reported 2.3 mV (50), a value that would

produce a 35% decrement in Qrate for a 1-mV hyperpolar-

ization (cf. Eq. 4). Fig. 11 shows that Poisson release and

a decrement of 39.3% in response to one photon, cor-

responding to an e-fold change for 2 mV, gives an efficiency

of just 0.26%. If in addition we assumed that Qrate,dark were

higher, like 200 Q s�1, giving a mean Qcount,dark of 20 Q and

a mean Qcount,Rh* of 13 Q, QT would rise to 4 Q, but that

value would still be much less than 13 Q. Efficiency would

rise only to 0.91% (data not shown).

In our analysis we accepted the hypothesis that the psy-

chophysical dark light was mainly due to spontaneous pro-

duction of Rh* (2,48,49), so we generally set the interval

between false positives due to quantal noise and continuous

rod voltage noise at 1600 s. However, measurements of the

rate of spontaneous production of Rh* and of the dark light

are highly variable and rely on questionable assumptions

(7,41,51,52). To these challenges to the hypothesis, we add

that 35% efficiency at the rod-to-rod-bipolar synapse (8, and

see our Fig. 12) means that at most 35% of spontaneous Rh*

can contribute to the dark light.

Moreover, the magnitude of the contribution of other

sources of noise—particularly quantal noise—that arise along

the path from rod bipolar cell to ganglion cell to human

performance is uncertain (53). Therefore, we investigated the

effect of allowing more quantal noise in rod release by re-

ducing the interval between false positives (due to quantal

noise and continuous rod voltage noise) to a value as short as

that between spontaneous Rh* events, ;200 s. We found

that the requirement for regular release (N) was relaxed by

only a trivial amount (Fig. 10).

Release must be regular

To achieve an efficiency of 35–40% with the standard

assumptions, we claim that the intervals between quanta

must be very regular; that is, the interval distribution must be

narrowed greatly, for example, by the factor N ¼ 0.123

compared to a Poisson release process (N ¼ 1) (Fig. 8 D).

This clockwork release narrows the distribution of Qcount,dark

and places the threshold QT (to produce false positives once

every 1600 s) at 7 Q instead of 0 Q, slightly less than the

mean Qcount,Rh* (8 Q). Correspondingly, Field and Rieke (8),

who describe threshold in terms of rod voltage, place the

threshold at �1.3 mV, beyond the average rod response to

a photon of �1.0 mV.

Clearly, regular release helps to overcome quantal noise

only if there is a mechanism that can discriminate a low

count (# QT) from a high count (. QT) at the synapse

between each rod and rod bipolar dendrite. The need for such

a threshold was recognized years ago, albeit for a different

purpose, to block transmission of the 60.2-mV continuous

voltage noise from each of the 25–100 rods converging onto

a single rod bipolar cell (11,13). Subsequently, van Rossum

and Smith (12) proposed a biological mechanism for such

a threshold: Their mechanism involves an enzyme in the rod

bipolar dendrite that reduces the concentration of an internal

messenger (like cyclic GMP) that opens messenger-gated

FIGURE 11 Larger decrement between Qrate,dark and Qrate,Rh* permits less

regular release. The decrement is determined by the voltage sensitivity of the

Ca21 channels in the presynaptic terminal. Decrements of 9.5%, 18.1%,

28.3%, and 39.3% are obtained for e-fold changes in conductance for 10, 5,

3, and 2 mV. For this figure, Qrate is 100 Q s�1. (A) For a given QT,

increasing the decrement widens the distribution of mean Qrate,dark due to

voltage noise (cf. Fig. 3 B) and thus increases voltage noise. To maintain the

dark noise interval at 1600 s, quantal noise must be reduced by reducing N.

(B) Increasing the decrement reduces the overlap between Qcount dis-

tributions, thus increasing the efficiency for any QT (small numbers). The

solid squares are the same as those in Fig. 9 B. Threshold QT must be an

integer number of quanta, so dashed lines, not solid lines, connect points

with the same decrement.
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channels in the bipolar cell dendrite. Ultimately sensitive to

the high rate of glutamate release by the rod in the dark, the

resulting high activity of the enzyme in the dark would hold

the concentration of the internal messenger at zero. The rate

of glutamate release would have to fall below a threshold

level before the activity of the enzyme would fall enough to

permit messenger concentration to rise above zero and open

messenger-gated channels.

One common strategy for setting a threshold to discrim-

inate between low-mean count and high-mean count dis-

tributions is to use a maximum likelihood criterion (chapter

A.15 of Rieke et al.) (54). For example, Fig. 8 A shows two

Qcount distributions, one with dark bars representing Poisson

release in the dark, the other with light bars representing

Poisson release after production of one Rh*. The figure

shows that the cause of a Qcount # 9 Q is more likely to be an

Rh* than darkness, whereas the cause of a Qcount . 9 Q is

more likely to be darkness. Thus, the maximum likelihood

setting of QT would be 9 Q. As we described in Results, that

criterion would produce far too many false positives.

Here we point out a more fundamental reason for rejecting

that criterion (or any criterion set by an ideal observer). The

ideal observer sets the threshold based on the Qcount,dark

distribution and the Qcount,Rh* distribution (55). However, to

set the interval between false positives, the rod bipolar

should consult only the distribution in the dark. Moreover, an

ideal observer would need to know which positive events

(Qcount # QT) were true positives and which were false

positives, that is, which positives arose from an Rh* and

which arose from noise. This is exactly what the dendrite of

a bipolar cell cannot do.

Efficiency of transmission

After slicing a mouse retina, Field and Rieke (8) suggested

that ;½ of a pool of 20 rods still contacted the rod bipolar

cell from which they recorded. Nonetheless, a high pro-

portion of the flashes that provided several photons to this

pool of rods failed to generate a response in the bipolar cell.

They suggested that a threshold 1.3 times as large as the

average response to an Rh* blocked transmission at each

synapse of rod voltage noise and most (75%) single Rh*

events. The value of 75% blockage—hence a value of 25%

efficiency—was obtained from the proportion of flashes that

failed to generate a response in the bipolar cell.

Field and Rieke’s Fig. 4 C provides the distribution of

normalized amplitudes of current responses to flashes of light

that generated an average of 0.25 Rh*/rod in two voltage-

clamped rod bipolar cells. We reproduce these distributions

in our Fig. 12 A. From these data we estimate the number of

intact rods and the synaptic efficiency. To obtain the values

of these two parameters, we calculate the probability of

transmission of a signal from each rod as the product of 0.25

Rh*/rod and the efficiency of transmission of that signal

across its synapse onto the rod bipolar cell. For example, if

efficiency was 36%, then the probability p of a signal from

each rod would be 0.25 3 36% ¼ 9.0%. Then we calculate

the probability of k¼ 0, 1, 2, 3, etc. signals being transmitted

by the pool of N intact rods, each with p ¼ 9.0%:

PðkjNÞ ¼ N!

k!ðN � k!Þp
kð1 � pÞðN�kÞ

: (5)

The parameters that best fit the observed distributions are

eight intact rods with 35% efficiency for one rod bipolar cell

(Fig. 12 B) and 11 intact rods with 39% efficiency for

a second (Fig. 12 C). These efficiencies are between the 25%

reported in Field and Rieke (8) and the 60% reported more

recently (53,56).

FIGURE 12 Efficiency estimated from rod bipolar cell responses to dim

flashes of light, the original data from a study by Field and Rieke (8). (A)

These two datasets are redrawn from Fig. 4 C in Field and Rieke (8).

They show, for each of two rod bipolar cells, the distribution of normalized

response amplitudes to light flashes that produced an average of 0.25 Rh*

per rod. (B) Open triangles show the distribution of number of Rh* signaled

by bipolar cell 1 after conversion of normalized amplitudes in A into number

of Rh*. Points and error bars are these numbers of responses 6 the square

root of these numbers of responses. As described in the text, solid squares

connected by a dashed line represent the probability (right ordinate) of

signals for 0–4 Rh* calculated by a binomial method for a pool of eight

intact rods and an efficiency of transmission from each rod to its rod bipolar

cell of 35%. These parameters minimize the error calculated by least squares.

(C) The same analysis as in B for rod bipolar cell 2. Here, the parameters of

the calculated distribution (n) are 11 intact rods and an efficiency of 39%.
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Regular release could also be modeled by
a refractory period

We modeled regularity by assuming a high-order counting

process, but we could have assumed some other mechanism,

such as a refractory period after each quantal release event.

Indeed, regular spiking in retinal cells has been described in

those terms (57–59). The mapping between descriptions may

be illustrated as follows: Assume that quanta were released

according to a Poisson process and that the mean interval

between quantal events was 1 ms. The SD of the interval

distribution would equal 1 ms as well (see Eq. A1 and asso-

ciated text in Appendix A). If each release event were

followed by an absolute refractory period of 9 ms, the mean

interval would increase to 10 ms, but the SD would remain

1 ms (instead of 10 ms), and N would be 0.1.

In some central synapses only one of 10–20 docked

vesicles fuse in response to a spike (19,20,60–64), and the

next fusion event is delayed by what has been described as

a ‘‘refractory period’’ of ;10 ms (60,65). (We discuss multi-

vesicular release below.) The mechanism of the refractory

period in this case is unknown, however. Only one of the

docked vesicles might be competent, or the fusion of one

vesicle might block fusion of the remainder for a period of

time. The special challenge for such a mechanism in the rod

terminal would be to span two ribbon-associated active

zones, ;2 mm in total length (37) and with many times 20

docked vesicles.

However, a refractory period that would satisfactorily

regularize release would create the following problems. First,

in the above example, to generate release in ;1 ms (after the

9-ms refractory period) the Qrate during that 1 ms would have

to be 1000 Q s�1. Second, to reduce Qrate from 100 to 80 Q

s�1, the total interval between quanta would have to increase

from 10 to 12.5 ms. Assuming that the refractory period is

constant, activation of one Rh* would have to increase the

nonrefractory interval from 1 to 3.5 ms, requiring an almost

fourfold reduction in Qrate, from 1000 to 286 Q s�1, after the

9-ms refractory period. Therefore, this assumption is likely

to be incorrect, and to account for the dependence of Qrate on

[Ca21]int, the duration of the refractory period would have to

depend on [Ca21]int as well.

Two kinds of biological mechanism could
regularize release of quanta

We distinguish two types of biological mechanism that could

account for the regularity of the quantal release process, one

based on an internal mechanism that would operate in an

isolated rod, the other requiring an intact synapse. Examples

of an internal mechanism include an internal oscillator and

an internal counter. As precedent for the latter, variation in

the single-photon response in the rod is reduced by the

requirement for multiple phosphorylations to deactivate Rh*

(66–68). Indeed, several proteins in presynaptic terminals

that are involved in synaptic release have large numbers of

phosphorylation sites, including 30 on bassoon and 16 on

piccolo (69).

In contrast, an intact synapse would be needed if regularity

were imposed by feedback. Several candidate mechanisms

have been reported. For example, glutamate activates

autoreceptors in vertebrate cones (70,71). Also, the release

of the contents of the synaptic vesicle might briefly reduce

the pH in the synaptic cleft underlying the active zone and

shift the voltage-sensitive range of the Ca21 channels,

possibly with participation of Ca21-dependent Cl� channels

(34,72–75).

After expressing synaptopHluorin (76) in hippocampal

neurons, Gandhi and Stevens (77) were able to monitor

release of individual quanta. Using the styryl dye FM1-43,

Arvanis, Pyle, and Tsien (78) were also able to monitor

release of single quanta. With better sensitivity and time

resolution, such methods might be able to test the clockwork

hypothesis in isolated rods and also in ‘‘intact’’ rod circuits

in retinal slices. Moreover, either method might be used to

measure the effect of absorption of single photons on release

rate by rods.

Each quantum represents a large number of
Poisson events

We suggest that several mechanisms, both presynaptic and

postsynaptic, contribute to reducing quantal noise at the

synapse between a rod and a rod bipolar cell dendrite.

Presynaptically, Qrate is high, and the Erlang order of the

regular release process is high. Postsynaptically, each rod

bipolar cell dendrite counts many Erlang Events (quanta) in

its counting window. For example, to achieve 34% efficiency

with a Qrate,dark of 100 Q s�1 and mean counts of 10 Q in the

dark and 8.2 Q for one Rh*, Erlang order would need to be

;66 (Fig. 8 D). Since each Erlang Event—release of one

quantum—would ‘‘represent’’ 66 Poisson events, the (no

photon/photon) ‘‘decision’’ would depend on the difference

between 660 Poisson events (10 Q 3 66 Poisson events/Q)

and 530 Poisson events (8.2 Q 3 66 Poisson events/Q).

From the point of view of the presynaptic terminal of the

rod, the alternative to releasing ten 66th-order ‘‘Erlang

quanta’’ in a counting window of 0.1 s is to release 660

‘‘Poisson quanta’’ in that time, an unsustainable rate (79,80).

Therefore, by incorporating a mechanism that counts

Poisson events and permits low Qrates, the rod terminal

expends far less of the energy associated with manufacture,

release, and recycling of quanta, perhaps at the relatively

minor cost of phosphorylating a number of sites on some

protein in the presynaptic terminal.

Cone bipolar cells add another mechanism to increase

their count: They sample many synaptic ribbons. Nonethe-

less, we suggest that quantal release at each cone ribbon must

be regular as well. Specifically, a foveal ON midget bipolar

cell provides dendrites (‘‘central elements’’) to the active
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zones associated with ;16 synaptic ribbons of one cone

(81). This cone bipolar cell has the same mGluR6 receptor as

the rod bipolar cell (82,83), so it can sum several quanta in its

counting window, estimated as ;50 ms (1).

The base of a synaptic ribbon in a cone is shorter (;0.6

mm) (84) than that in a rod (;2 mm), so we assume that

Qrate,dark is 40 Q s�1 at each cone synaptic ribbon. (This

assumption is generous, as Berntson and Taylor (85) esti-

mate ;20 Q s�1.) In that case each central element would

count 2 Q over 50 ms, and the ON midget bipolar cell would

sum just 32 Q from its 16 central elements in a counting

window, more than the number of quanta (e.g., 10 Q)

counted by a rod bipolar cell dendrite. If the Erlang order

regularizing quantal release at a cone ribbon equaled 66, this

quantal count in the dark would correspond to 2112 Poisson

events, more than the rod (660 above), enabling the cone to

encode more levels of stimulation (as it must) than the two

(no photon/photon) encoded by a rod under starlight con-

ditions. Laughlin and de Ruyter van Steveninck (86) made

a similar argument for a large number of quanta at the output

of an invertebrate photoreceptor.

Synaptic ribbons are associated with high rates
of release but not necessarily regular release

Synaptic ribbon-like structures are also found in hair cells

in the lateral line system of fish and its evolutionary

descendants, namely auditory, vestibular, and electrosensory

systems (87). These receptor cells are also able to transmit

extremely small signals (, 1 mV) to their target neurons, so

these cells too must overcome quantal noise.

In response to appropriate stimuli, the cells postsynaptic to

these receptor cells show regular spiking, but the firing of an

afferent fiber in auditory nerve, for example, is regular

because it is phase-locked to a periodic stimulus (sound).

Indeed, in the absence of a tone, an auditory afferent fiber

fires at random intervals (88). If each afferent spike follows

release of one quantum or one coordinated release of several

quanta by an inner hair cell (88–90), and if the afferent fiber

receives all of its input at a single synaptic ribbon of an inner

hair cell (91,92), then quantal release events—both single

and multivesicular—at the ribbon in the unstimulated inner

hair cell must occur at random intervals. The lateral line

system may function similarly (93): Spiking in this afferent

is phase-locked to sinusoidal vibration (94) but is irregular in

the absence of stimulation. Thus, although ribbons may serve

different specialized purposes in different receptor cells

(95,96), the mere presence of a synaptic ribbon does not

insure regular release. Indeed, a single photon is an aperiodic

stimulus, so regular quantal release by a rod must be accom-

plished by a mechanism that may or may not be connected to

the presence of a synaptic ribbon.

At some central synapses (97), at ribbon synapses made by

hair cell terminals (89,98,99), and at ribbon synapses made

by bipolar cell terminals (100,101), multivesicular release

and/or compound exocytosis occur, perhaps to overcome the

postspike refractory period and sustain a high firing rate in

the target neuron (89). (By contrast, the synaptic target of the

rod does not fire action potentials.) If the number of vesicles

that fused before each multivesicular release event were

fixed, and if all release events were of this sort, then it is

conceivable that multivesicular release could be a presynaptic

counting mechanism that increases Erlang order and regu-

larizes quantal release.

However, if the number of vesicles in a multivesicular

release event is not fixed (89,97), a multivesicular event is

like a burst that contains several quantal release events at

very small intervals. Bursting reduces regularity, even pro-

ducing interval distributions with coefficients of variation

that can be larger than unity. Therefore, multivesicular re-

lease and compound exocytosis generally increase random-

ness, and variation in number of quanta participating in

multivesicular events increases quantal noise.

Up to this point we have assumed that the narrowing N of

the distribution of intervals between quantal release events in

the dark and the distribution of intervals for one Rh* are the

same. However, there is the possibility that the intrinsic

regularity of quantal release might differ for the unstimulated

and the stimulated conditions in the rod, analogous to our

description of what happens in the auditory system. Cor-

respondingly, the difference between the quantal stream for

darkness and the quantal stream for one Rh* would be

greater if the Erlang order were high for the first and low for

the second.

If efficiency is , 50%, as we believe it to be, threshold QT

would be less than mean Qcount,Rh*. In that case, a broader

Qcount,Rh* distribution, as in Fig. 13, would place more

counts to the left of QT and consequently increase efficiency.

In that figure, the Qcount,dark distribution (dark bars) was

FIGURE 13 Less regularity in quantal release after production of Rh* can

improve efficiency. The Qcount distribution represented by the solid bars is

taken from Fig. 8 C. The fine dotted line without bars shows the distribution

for one Rh* and is also taken from Fig. 8 C. Both distributions derive from

a regular release process (N ¼ 0.235). The distribution represented by the

open bars is taken from Fig. 8 A for a random (Poisson) release process (N¼
1) in response to one Rh*. In this case, the part of the Rh* distribution that is

at or to the left of the threshold (QT ¼ 6) is greater for Poisson release than

for regular release.
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taken from Fig. 8 C with N ¼ 0.235, where a QT of 6 Q gave

4.81% efficiency. By contrast, the Qcount,Rh* distribution

(light bars) was taken from Fig. 8 A with N ¼ 1, that is,

assuming Poisson release. Efficiency for a QT of 6 Q would

rise to 29.2%. The improvement of efficiency that accom-

panies a narrowing of the Qcount,dark distribution but not of

the Qcount,Rh* distribution would be an example of stochastic

resonance (102,103).

Similarly, spiking in retinal ganglion cells is phase-locked

to periodic stimuli (104) but random when unstimulated

(after correction for bursts of ;3 spikes per spontaneous

Rh*) (46,105). This situation resembles that described above

for auditory nerve fibers. Thus, a difference in the regularity

of quantal release or spiking between the stimulated and the

unstimulated conditions could increase efficiency in all of

these highly sensitive sensory systems.

APPENDIX A: QUANTAL NOISE

Some of the equations and figures that follow can be found in textbooks and

online, but we present them here for three reasons. First, it is important to

have a consistent terminology with consistent symbols. Second, some

familiarity with these probability concepts and distributions is helpful. At the

same time, and third, great sophistication is not necessary, and readers

should not have to pore over textbooks to understand this material.

Interarrival time (interval) distributions

Poisson process

In a Poisson renewal process, events arrive at some rate a (Poisson events

s�1) with constant probability at any time after the last event (Fig. 4, A and B,

left panels) (chapter 2.3 of Cox (106)). The time between events, the

interarrival time (or ‘‘interval’’), follows an exponential distribution (Eq.

A1), as illustrated by the r ¼ 1 curve in Fig. 4 C.

f ðtÞ ¼ ae
�a3t

: (A1)

The mean interval m (in seconds) equals 1/a, the variance s2 of the

distribution of intervals equals 1/a2 (modified from Eq. A.46 of Wickens

(107)), and the standard variation s of the distribution equals 1/a, the same

as the mean. In the example in the left panel of Fig. 4 A, the rate a is 100

Poisson events s�1, so the mean interval and the SD are both 0.01 s.

Erlang process

An rth-order ordinary Erlang renewal process declares an Erlang Event (here

with an uppercase ‘‘E’’) when r underlying Poisson events (with a lowercase

‘‘e’’) of rate a have accumulated, where r is a positive integer. (An Erlang

process with order r ¼ 1 is a Poisson process.) With r . 1, the process

becomes more regular, as shown by the examples in the right panels of Fig.

4, A and B, for r ¼ 25. The mean interval for an Erlang Event (m) is the

Erlang order r (underlying Poisson events per Erlang Event) divided by the

Poisson rate a (underlying Poisson events s�1), that is, m ¼ r/a. The

distribution of interval (t) until the rth Poisson event, that is, until the next

Erlang Event, is a probability density function (Eq. A2) (modified from Eq.

A.49 of Wickens (107)).

f ðtÞ ¼ tðr�1Þe�at
a

r

ðr � 1Þ! : (A2)

The variance s2 ¼ r /a2, and the standard deviation s ¼
ffiffi
r

p
=a. The

coefficient of variation (CV) of this interval time distribution equals the SD

(s) divided by the mean interval (m); thus, CV ¼ 1=
ffiffi
r

p
.

To appreciate the effect of increasing r on the width of the distribution of

interarrival times, it is convenient to keep the mean interval m constant by

increasing the rate of underlying Poisson events a along with the order r.

Then it becomes clear that the distribution of intervals progressively narrows

as r increases from 1 to 9 to 25 to 100 (and a increases from 100 to 900 to

2500 to 10,000) (Fig. 4 C). The SD is reduced by the factor 1=
ffiffi
r

p
, a quantity

that we refer to as ‘‘narrowing’’ (or N for short). Since CV ¼ 1=
ffiffi
r

p
, the CV

of an interval distribution is reduced by the same factor N.

Gamma process

A gamma renewal process is the same as an Erlang process but generalized

to include positive noninteger values of r. In that case, Eq. A2 is replaced by

Eq. A3 (modified from Eq. A.52 of Wickens (107)),

f ðtÞ ¼ t
ðr�1Þ

e
�at

a
r

GðrÞ ; (A3)

where G(r) is the gamma function (modified from Eq. A.50 of Wickens

(107)).

GðrÞ ¼
Z N

0

t
ðr�1Þ

e
�t
dt: (A4)

Number distribution

Poisson process

If a counter accumulates Poisson events within a window of duration T, the

product of rate a and time T gives the expected number l of Poisson events.

For example, in the left panel of Fig. 4 A, the combination of a rate a of 100

events s�1 and a time T of 0.1 s yields an expected number l of 10 Poisson

events. If release of quanta of neurotransmitter were a Poisson process, the

probability distribution of number of quanta (x) depends on l as given by

Eq. A5 from Eq. A.12 of Wickens (107):

Pðx ¼ kÞ ¼ e
�l
l

k

k!
; (A5)

where P(x ¼ k) is the probability that k Poisson events arrived in that

window T. This number distribution is shown by the r¼ 1 curve in Fig. 4 D.

(Numbers of events are whole numbers; the curve connects related points but

is dashed instead of solid to emphasize that fractional events are not

meaningful.) This number distribution is characterized by a variance s2 that

equals the mean l, 10 in this case; thus, standard deviation s ¼
ffiffiffi
l

p
, 3.162 in

this case. CV ¼ s/l, 31.62% in this case. The probabilities summed over all

x equals one.

Grouped Poisson number distribution: Erlang process

Recall that an rth-order Erlang renewal process declares an Erlang Event

when r underlying Poisson events of rate a have accumulated. (In this case

an Event could represent release of one quantum of neurotransmitter, and a

could represent the average rate of underlying Poisson events.) In an

‘‘ordinary’’ renewal process, the counting begins immediately after the last

(0th) Erlang Event, with 0 Poisson events accumulated (chapter 2.1 of Cox

(106)). The probability of K Erlang Events in time T is equal to the sum of

the probabilities of rK Poisson events, rK 1 1 Poisson events, rK 1 2

Poisson events, etc., up to r(K 1 1) � 1 Poisson events. For example,

the probability of ten 4th-order Erlang Events is equal to the sum of the

probabilities of k ¼ 40–43 underlying Poisson events, as shown by the
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summation limits in the equation for the discrete probability distribution of

the number of Erlang Events (Eq. A6) (108, modified from Eq. 4 of chapter

3.1 of Cox (106) and Eq. 4.131 of Johnson et al. (109)),

PðX ¼ KÞ ¼ +
rðk11Þ�1

y¼rk

e
�rMðrMÞy

y!
: (A6)

If release of quanta is an Erlang process, the distribution of number of

quanta (X) would depend on the order r and the expected number l ¼ aT of

underlying Poisson events, where a is the rate of underlying Poisson events

and T is the duration of the counting window. If a¼ 400 underlying Poisson

events s�1, and T ¼ 0.1 s, l ¼ aT would be 40 underlying Poisson events.

We define a quantity M that is equal to l/r. With l¼ 40 underlying Poisson

events and r ¼ 4 in this example, M would be 10 Erlang Events, and l ¼
aT ¼ rM ¼ 40 underlying Poisson events. Fig. 4 D shows progressively

narrower count distributions for several r, increasing from 1 to 100. For this

reason, the count distribution that results from an ordinary Erlang renewal

process has been called a Grouped Poisson distribution (chapter 12.5 of

Johnson et al. (109)).

In an ordinary renewal process, M does not equal the expected number of

Erlang Events because ‘‘excess’’ Poisson events are rounded down. For

example, the probability of ten 4th-order Erlang Events is the sum of the

probabilities for 40, 41, 42, and 43 underlying Poisson events. None of the

‘‘excess’’ (1, 2, and 3) Poisson events over 40 add to the number 10 of 4th-

order Erlang Events, yielding 0, 0.25, 0.5, and 0.75 uncounted 4th-order

Erlang Events, an average loss of 0.375 Erlang Events. The actual expected

number of Erlang Events in this case, 9.625, is 10 – 0.375. The expected

number of Erlang Events is always less than M by the amount calculated in

Eqs. A7 and A8, where r is the order.

Shortfall ¼ +
r�1

z¼0

z=r

r
(A7)

¼ 1 � 1=r

2
: (A8)

Hence,

Expected number of Erlang Events ¼ M � 1 � 1=r

2
: (A9)

As r increases, irrespective of M, the shortfall approaches 0.5 Erlang Events.

Thus, for an M of 10 and a high order r (e.g., 25), slightly more than half of

the counts of Erlang Events would be 10, and slightly less than half would be

9. The expected number of Erlang Events would be 9.52, illustrated by the

highly regular Erlang Event train in Fig. 4 A, right panel, giving the narrow,

discrete r ¼ 25 number distribution in Fig. 4 D.

The expected (mean) number of Erlang Events is thus ,M. The shortfall

depends only on r and would be 0.375 for a 4th-order renewal process. Thus,

to achieve an expected number of 4th-order Erlang Events equal to 10, it

would be necessary to use a larger Poisson rate a or a longer T to set M to

10.375.

In an ‘‘equilibrium’’ renewal process the counting begins at a random

time (Cox (106)), implying that some random number of Poisson events

have already been accumulated. It may appear more natural to model the

counting of quanta of neurotransmitter—Erlang Events—by a rod bipolar

cell dendrite on this kind of renewal process, since the bipolar cell is con-

tinuously counting quanta. Then, the already accumulated Poisson events

balance the excess Poisson events, and the expected number of Erlang

Events is equal to M. However, in this kind of renewal process the time to the

first Erlang Event has a different distribution from that of intervals for

subsequent Erlang Events, and Eq. A6 does not apply. For that reason, we

use an ordinary renewal process in this article. Moreover, an ordinary

renewal process with M and some expected number of Erlang Events yields

the same distribution as an equilibrium renewal process with its mean set to

that expected number. In addition, comparison of two number distributions

generated by ordinary renewal processes with the same order r is unaffected

because the two distributions have the same shortfall (Eq. A8).

For the distribution of the number of Erlang Events (Fig. 4 D), one might

assume that variance s2 of the count would equal M/r, the standard deviation

s of the count would equal
ffiffiffiffiffiffiffiffiffi
M=r

p
, and the CV would fall as the narrowing

N ¼ 1=
ffiffi
r

p
, analogous to what occurs with the distribution of intervals. This

assumption is approximately correct for values of r , 25. However, for

higher-order r the SD of the number distribution begins to depend on M as

well as r. There are two extreme cases for large r (.25). For values of M that

result in means that are integers, the SD falls to zero. For values of M that are

integers, the SD asymptotes to 0.5.

Grouped Poisson number distribution: gamma process

If release of quanta follows an ordinary gamma renewal process instead of an

Erlang renewal process, that is, if order r is noninteger, then the distribution

of the number of quanta (X) in Eq. A10 would depend on the same

parameters as the distribution for an Erlang process as described above (108,

modified from Eq. 4.130 of Johnson et al. (109)):

PðX ¼ KÞ ¼ ½GðrKÞ��1

Z rM

0

n
1 � y

r
GðrKÞ

GðrðK1 1ÞÞ

o
y

rK�1
e
�y
dy:

(A10)

The expected number of Events can be calculated as we did for an Erlang

process (Eq. A9), the SD of the number distribution is approximated as we

described above for an Erlang process, and the SD is reduced approximately

by N ¼ 1=
ffiffi
r

p
for order r , 25. The count distribution that results from an

ordinary gamma renewal process may also be called a Grouped Poisson

distribution.

Microsoft Excel 2000 (Microsoft, Redmond, WA) functions can be used

to compute Eq. A10 as follows:

GAMMADISTðrM; rðKÞ; 1; 1Þ�
GAMMADISTðrM; rðK1 1Þ; 1; 1Þ: (A11)

Excel is unable to compute the GAMMADIST function for large K and large

rM. Therefore, we used Mathematica 4.2 (Wolfram Research, Champaign,

IL) and Mathlink (Mathematica Link for Excel) 2.1 (Wolfram Research,

Champaign, IL) to compute the gamma probabilities. The corresponding

equation and functions in Mathematica are as follows:

PðX ¼ KÞ ¼ Gamma½rðK1 1Þ; rM�
Gamma½rðK1 1Þ� � Gamma½rK; rM�

Gamma½rK� ;

(A12)

where the gamma function, Gamma[x], already shown as Eq. A4, has

integration limits from 0 to N. Gamma[x,y], the (upper) incomplete gamma

function, resembles Eq. A4 but has integration limits from y to N.

APPENDIX B: QUANTAL NOISE CAN BE
EXPRESSED IN UNITS OF MILLIVOLTS

Continuous rod voltage noise (RVN), the SD of the distribution of rod

voltage, is typically expressed in units of millivolts (e.g., 0.2 mV, as in Fig. 3

A). Quantal noise (QN), the SD of a Qcount distribution in the absence of rod

voltage noise, is expressed in units of quanta. Because continuous rod

voltage noise and quantal noise are independent, total noise (TN) may be

computed as the square root of the sum of the squares of rod voltage noise

and quantal noise. To compute total noise, however, rod voltage noise and
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quantal noise must be in the same units, either both in quanta or both in

millivolts.

To transform the SD of continuous rod voltage noise in millivolts

(RVNV) to quanta (RVNQ), we take advantage of Eq. B1,

TN
2

Q ¼ RVN
2

Q 1QN
2

Q; (B1)

where quantal noiseQNQ is the SD of theQcount distribution with zero voltage

noise, expressed in quanta, and total noise TNQ is the SD of the Qcount

distribution with both continuous voltage noise and quantal noise, expressed

in quanta. The convolution method (Fig. 5) is used to generate both of these

Qcount distributions. From both standard deviations TNQ and QNQ in quanta

and Eq. B1, continuous rod voltage noise may be computed in quanta (RVNQ)

as well.

Therefore, we first set continuous rod voltage noise RVNV to 0 mV. (As

examples, the open bars in Fig. 6 A and the open bars in Fig. 6 B show Qcount

distributions for RVNV of 0 mV for N ¼ 1 and N ¼ 0.2.) The resulting SDs

of the Qcount distributions reflect quantal noise alone, hence QNQ for N ¼ 1

and N ¼ 0.2.

Second, we measured the SD of Qcount distributions (TNQ) in the presence

of both continuous rod voltage noise (0.1, 0.2, 0.3, or 0.4 mV) and quantal

noise for N ¼ 1.0. With QNQ and TNQ in hand, we applied Eq. B1 to solve

for RVNQ, as shown by the solid points in Fig. 7 A. For N ¼ 1, the slope of

the relationship in Fig. 7 A is 2.06 Q/mV. We repeated the exercise with N¼
0.2, with the results shown by the open points in Fig. 7 A, and then again for

N ¼ 0.25, 0.33, and 0.5 (data not shown). All of these data were obtained

with a mean count of 10 Q, with the requisite Qrate obtained by use of Eq. 4.

For N ¼ 0.2, the slope is trivially different at 2.11 Q/mV; for the

intermediate N, the slopes are intermediate (data not shown). These slopes

are close to 2 Q/mV, because M changes by slightly less than 2 Q (from 10 to

8.2 Q) for departure of voltage from DV ¼ 0 to �1 mV (Fig. 3) and by

slightly more than 2 Q for departure of voltage from DV ¼ 0 to 11 mV.

Therefore, we can graph continuous rod voltage noise in units of

millivolts (RVNV) or in quanta (RVNQ) against quantal noise in units of

millivolts (QNV) or quanta (QNQ) and obtain total noise in units of millivolts

(TNV) or quanta (TNQ) (Fig. 7 B).

This analysis has three virtues. First we can transform quantal noise into

millivolts for comparison with continuous rod voltage noise. (Expressing

quantal noise in millivolts corresponds to referring noise to the input,

a standard practice (110).) Consider quantal noise for a mean count of 10 Q

and N ¼ 1, for which QNQ ¼
ffiffiffiffiffi
10

p
Q ¼ 3.16 Q. In that case, quantal noise

could be expressed as 1.54 mV (¼ 3.16 Q 3 1 mV/2.06 Q), clearly

dominating the physiological 0.2 mV of continuous rod voltage noise. Total

noise would be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2211:542

p
¼ 1.55 mV, so continuous rod voltage noise

would cause total noise to increase just 1.01 times over quantal noise alone,

as reported in the first section of Results. This total noise has also been called

‘‘effective noise’’ (chapter 3.1 of Rieke et al. (54)).

Now consider quantal noise for a mean count of 10 Q and N ¼ 0.2, for

which QNQ ¼ 0.71 Q. (This value is close to 0:23
ffiffiffiffiffi
10

p
but not equal to it

because the SD of the number distribution for N , 1 is only approximated

by N 3
ffiffiffiffiffi
10

p
.) In that case, quantal noise could be expressed as 0.34 mV

(0.71 Q 3 1 mV/2.11 Q), still dominating the physiological 0.2 mV of rod

voltage noise. Total noise would be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2210:342

p
¼ 0.394 mV, so

continuous rod voltage noise would cause total noise to increase just 1.16

times over quantal noise alone, also as reported in the first section in Results.

Second, if one wished to take into account other independent sources of

noise that affect the Qcount distribution, one could easily do so with a simple

extension of Eq. B1.

Third, although we obtained TNQ in the presence of continuous rod

voltage noise and quantal noise by use of the convolution method, it is

possible to estimate TNQ more simply by use of Eq. B1 and the factor that

transforms continuous rod voltage noise into quanta. To illustrate the last

point, we compute the SD corresponding to 0.2 mV of continuous rod

voltage noise as 0.412 Q (0.2 mV 3 1 mV/2.06 Q). We compute QNQ, the

SD in the absence of continuous rod voltage noise, for a mean count of 10 Q

and N ¼ 1 as
ffiffiffiffiffi
10

p
Q ¼ 3.16 Q. Then, from Eq. B1 we estimate TNQ when

both are present as 3.19 Q, exactly what we measured by the convolution

method. Similarly, we can compute the QNQ for a mean count of 10 Q and

N ¼ 0.2 as 0:23
ffiffiffiffiffi
10

p
Q ¼ 0.63 Q, so from Eq. B1 we estimate TNQ when

both are present as 0.76 Q, just 8% less than what we measured by the

convolution method, 0.82 Q. The small difference occurs because the SD

of the discrete count distribution is well approximated—but only approx-

imated—by N 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean count

p
.
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