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Portable NMR systems generally suffer from poor field homogeneity and are therefore used more
commonly for imaging and relaxation measurements rather than for spectroscopy. In recent years,
various approaches have been proposed to increase the sample volume that is usable for
spectroscopy. These include approaches based on manual shimming and those based on clever
combinations of modulated radio frequency and gradient fields. However, this volume remains small
and, therefore, of limited utility. We present improved pulses designed to correct for inhomogeneous
dispersion across wide ranges of frequency offsets without eliminating chemical shift or spatial
encoding. This method, based on the adiabatic double passage, combines the relatively larger
corrections available from spatially matched rf gradients �C. Meriles et al., J. Magn. Reson. 164,
177 �2003��. with the adjustable corrections available from time-modulated static field gradients �D.
Topgaard et al., Proc. Natl. Acad. Sci. U.S.A. 101, 17576 �2004��. We explain the origins of these
corrections with a theoretical model that simplifies and expedites the design of the pulse waveforms.
We also present a generalized method for evaluating and comparing pulses designed for
inhomogeneity correction. Experiments validate this method and support simulations that offer new
possibilities for significantly enhanced performance in portable environments. © 2009 American
Institute of Physics. �doi:10.1063/1.3243850�

I. INTRODUCTION

For many years, nuclear magnetic resonance �NMR�
measurements could only be acquired with expensive, immo-
bile laboratory instruments. In recent years, the development
of portable, single-sided NMR sensors allowed the possibil-
ity for truly mobile measurements. Such sensors can be taken
into the field, where they can noninvasively analyze portions
of arbitrary-sized samples to acquire spin density images, as
well as information on spin relaxation and motion.1,2

However, such mobile NMR devices attempt to extract
signals from sample volumes that approach a significant
fraction of the sensor’s size. The sensor is typically a discrete
array of permanent magnet elements and typically does not
enclose the sample �i.e., it is single sided�. Therefore, varia-
tions in the magnetic field hinder attempts to perform stan-
dard NMR experiments, such as chemical shift-resolved
spectroscopy. Even the smaller inhomogeneities of a very
cleverly designed mobile system will significantly dephase
precessing nuclear spins. Although in some other circum-
stances, this dephasing could be ignored, it will attenuate the

free induction decay �FID� signal acquired and broaden the
resonances so that the spectrum becomes devoid of any
chemical information.

The implementation of fully functional mobile NMR
systems therefore requires a means of counteracting these
inhomogeneities. Signal acquisition over a very small region
can lead to homogeneous spectra;3,4 however, many applica-
tions need the signal acquired from relatively larger volumes,
especially when the rf coil is large or distant with respect to
this volume �and the filling factor is low�. Shim elements
based on magnetic materials or electromagnetic coils can
generate spatially varying fields to cancel field inhomogene-
ities. See, for example, previous work,5 where the field of a
mobile system was corrected to the order of less than 1 ppm
across a volume on the order of tenths of a cubic centimeter.
Unfortunately, additional hardware components of any kind
add complexity to the design of a system and require either
more power or a longer setup time. Therefore, in this article,
we enhance corrective methods based on rf pulse sequences.

Methods based on rf pulse sequences will alleviate some
of the need for the added design complexity and setup time
�or power� required by extensive field shimming procedures
or, alternatively, will relax the constraints on the hardware
design needed to achieve a given level of accuracy. In con-a�Electronic mail: johnfranck@gmail.com.
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trast to the overhead required for new hardware components,
most NMR spectrometers can routinely modulate the ampli-
tude, phase, and frequency of rf pulses in order to generate
new types of pulses. Various authors have shown ways of
manipulating this flexibility to effect uniform rotations over
wide ranges of offsets without any change to the basic
hardware.6–9 Others have directly attacked the problem of
signal acquisition in inhomogeneous fields with pulse se-
quences that exploit the signal refocused by inversion
pulses10–12 as well as pulse sequences that employ multiple
quantum coherence to remove the effects of
inhomogeneities.13–15 Recently developed “ex situ” pulse
sequences,16,17 the type of rf pulse sequences discussed in
this article, focus on employing this same flexibility to selec-
tively refocus the effects of inhomogeneities on the sample.

Ex situ pulse methods capitalize on the fact that a mag-
netic resonance �MR� signal consists of a series of acquisi-
tion points separated by discrete time intervals of spin evo-
lution. Over such an interval, the inhomogeneity in the static
magnetic field results in a spatially dependent rotation about
the local quantization axis �z-axis�. The application of an
equal and opposite rotation will refocus the spins dispersed
by the inhomogeneity, thus recovering signal without dis-
turbing any chemical shift or imaging information encoded
by the spins. The central challenge of ex situ NMR is the
design of rf pulses that generate z-rotations proportional and
opposite to the field inhomogeneity across the sample space.

From another perspective, ex situ pulses act as a sophis-
ticated analog of imaging encoding. They can be viewed as a
type of phase18 encoding pulse, employed to cancel the un-
desirable encoding resulting from a period of inhomoge-
neous evolution; they recover signal in a fashion analogous
to a gradient echo. Unlike typical phase encoding pulses,
where gradient fields can only generate a spatially linear en-
coding, shim pulses combine gradient modulation with rf
modulation to encode a phase that varies nonlinearly along
one or more dimensions, while avoiding incorporating any
evolution due to chemical shifts or local field offsets.

Various schemes for applying arbitrarily spatially vary-
ing phases �i.e., z-rotations� have been developed or could be
adapted to this purpose, such as Shinnar–Le Roux19 pulses in
the presence of a gradient or Freeman’s polychromatic
pulses.20,21 Most notably, some methods based on voxel or
slice-correction strategies20,22,23 allow for rf-based correc-
tions of inhomogeneities and function uniquely well in com-
bination with ultrafast NMR spectroscopy �i.e., multidimen-
sional spectroscopy acquired in a single scan�. However, if
mobile sensors are to employ such rf pulses effectively, they
must necessarily act uniformly across a range of offsets �field
inhomogeneities and chemical shift offsets�. Unlike ultrafast
methods, they must also maximize signal by allowing all
spins in the sample to contribute to the signal at all time
points in the free induction decay. More recent developments
in ex situ MR24,25 have addressed these needs by resorting to
adiabatic pulses for their insensitivity to off-resonance
effects.

Therefore, in this article �as in previous work24,25�, we
focus on the design of z-rotations that operate uniformly
across a wide range of offsets and that can extend easily to

multiple spatial dimensions. Such corrections are uniquely
suited for applications in portable systems. We describe an
experiment that can explicitly demonstrate this offset robust-
ness, and we demonstrate that the adiabatic approximation
can clearly explain how such pulses give rise to complex
corrections, thus simplifying and speeding up the design pro-
cess. The resulting model simultaneously describes “shim
pulses”25 and “matching pulses.”24 This, in turn, allows us to
generate a single pulse that incorporates the benefits of both
classes of pulses into a single, powerful, and rapid corrective
rotation, which acts uniformly across a wide range of offsets.

II. THEORY

In this section, we explain the differences between hard-
ware matching and shim pulses and then review the adiabatic
approximation and its implications for these pulses. With this
background in hand, we then elucidate the mechanism re-
sponsible for both hardware matching and shim pulse effects
in detail. We next determine how shim pulses uniformly ap-
ply a nonlinear correction across a wide range of offsets,
then demonstrate how this reasoning naturally extends to in-
corporate hardware matching strategies. Finally, we demon-
strate a simple means of spatially translating shim pulse cor-
rections; this method will allow the optimal combination of
the matching and shimming effects.

A. Hardware matching pulses versus shim pulses

In order to apply a spatially dependent corrective rota-
tion, ex situ pulses must be able to discriminate between
different locations in space. A spatially varying rf field can
rotate spins differently at different locations, as can a rf pulse
acting in the presence of a static field gradient. Previously
designed ex situ pulses employ one of these two separate
methods and exhibit one of two extremely different
behaviors.

In the first extreme, “hardware matching” pulses apply a
phase directly proportional to the strength of the rf field.24

These pulses can apply relatively large phases to rapidly cor-
rect for large inhomogeneities; however, the rotation which
they apply cannot actually cancel the effects of the static
field inhomogeneity unless the rf and static field gradients
exactly match at all points in space. When the shape of the
static field inhomogeneity changes, one must either construct
a new rf coil for each different field profile or employ an
adjustable rf field design.26

Shim pulses, on the other hand, attempt to work around
this rather inflexible stipulation; a time-modulated imaging
gradient or a time-modulated pulsed-field gradient acts in
concert with a homogeneous rf field to generate a phase that
varies nonlinearly along the direction of the gradient. For
example, a standard solution-state NMR probe equipped
with x- and y-gradients can implement shim pulses that gen-
erate spatial corrections suitable for �Bz�x2 and x2−y2

inhomogeneities.25 Changes to the time modulation of the
gradient waveforms, achieved merely by reprogramming the
spectrometer, alter the spatial variation in the resulting cor-
rection. However, because the corrective angle does not scale
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linearly with the gradient strength, shim pulses generate a
much weaker correction than hardware matching pulses.27

The combined approach presented here broadens the ap-
plicability of ex situ NMR. The more efficient hardware
matching provides the bulk of the corrections, while shim
pulses fine tune the corrective phases to tweak the correc-
tions to high accuracy. This is analogous to the way a typical
superconducting magnet employs cryoshims and room-
temperature shims. Neither alone provides a correction suit-
able for obtaining spectroscopy in all cases due to limitations
in either the accuracy or the strength of the applied correc-
tion, while together, they apply a correction both strong and
accurate. The dramatic nature of this effect will be fully dem-
onstrated in Sec. V.

B. Adiabaticity

Both shim pulses25 and the most robust hardware match-
ing pulses24 employ altered forms of the adiabatic full pas-
sage �AFP�. During an AFP, both the frequency and ampli-
tude of the rf irradiation change in time, according to the
�normalized, unitless� functions F�t� and A�t�, respectively.
This sweeps the effective magnetic field from the z-axis,
through the transverse plane, and to a final position antipar-
allel to its starting position. If the direction of the effective
field reorients slowly, relative to its associated Larmor fre-
quency, such that

� d

dt
arctan�Beff,z

Beff,x
��/��Beff� � 1, �1�

where Beff,x and Beff,z give the x and z components of the
effective field in the rotating frame, the pulse is adiabatic.
Spins initially in the transverse plane will then remain locked
in the plane perpendicular to the effective field �i.e., the
transverse plane of the “doubly rotating frame”28�, even as
the effective field changes direction. While in that plane, the
spins rotate about the effective field Beff at its associated
Larmor frequency ��Beff� �Fig. 1�. Thus, across a certain off-
set bandwidth �generally only slightly smaller than the range
of the frequency modulation �sw� where it acts adiabatically,

an adiabatic passage behaves in a remarkably simple and
uniform fashion.

The net frequency offset �Beff,z has contributions from
the local resonance offset � and the applied gradient field
r ·G, as well as the changing frequency of the rf pulse
�swF�t�,

�Beff,z = �r · G�t� + � − �swF�t� . �2�

Meanwhile, Beff,x is determined by the maximum amplitude
of the rf field across both space and time B1,max and varies
both across space, as determined by �B1�r� /B1,max �the spa-
tially dependent rf misset�, and as a function of time, as
determined by A�t�,

Beff,x = �1 − ��B1�r�
B1,max

��B1,maxA�t� . �3�

The previously described behavior of an adiabatic passage
now indicates that the spins will invert and experience a net
rotation about the z-axis �i.e., phase� given by

��r,�� = �	
0

tp

�Beff�r,�,t��dt

= �	
0

tp 
Beff,x
2 ��B1�r�

B1,max
,t� + Beff,z

2 �r,�,t�dt . �4�

Note that this approximation dramatically simplifies the cal-
culation of the effect of the rf irradiation; without this sim-
plification, the product of hundreds of matrices would be
needed to approximate the same result.25 Furthermore, the
adiabatic approximation �Eq. �4�� provides a sufficient de-
scription of these pulses; while it may initially seem desir-
able to account for deviations from adiabatic behavior, such
deviations will typically be undesirable, as they will prevent
proper inversion of the spins and will lead to signal loss.

Although adiabatic pulses exhibit a uniquely uniform be-
havior that is easy to describe, neither the inversion nor the
offset dependence of the phase effected by a single adiabatic
passage is desired in ex situ pulses. However, when two
identical AFPs act in sequence, the undesirable offset depen-
dence and magnetization inversion cancel.29 Therefore, adia-
batic rf matching pulses, shim pulses, and the new pulses
presented here are all, in fact, modifications of such an “adia-
batic double passage” �ADP�. In these modified versions, the
two full passages differ slightly and do not completely can-
cel, leaving a net phase of

� = �	
0

tp 
�Beff,x
�2� �2 + �Beff,z

�2� �2dt

− �	
0

tp 
�Beff,x
�1� �2 + �Beff,z

�1� �2dt , �5�

where �1� and �2� superscripts label the two consecutive
passages.

C. Shim pulse

The application of gradient waveforms during an adia-
batic rf pulse will, in general, cause a complicated, spatially

FIG. 1. A schematic representation of the effective magnetic field �bold
arrows� and evolution pattern of one spin �fine line� over the course of an
AFP. Time increases from blue to orange. The spins precess through a com-
plicated trajectory, but always remain locked perpendicular to the effective
field.
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dependent change to the phase applied by the rf pulse. How-
ever, this complicated dependence has a simple origin. The
above analysis �Eqs. �2�–�5�� calculates the change in phase
by means of simple vector addition of the applied
gradient—a spatially dependent z-vector—to the effective
field. When the effective field lies along the z-axis, the ap-
plication of a gradient field will simply cause the adiabatic
precession frequency �i.e., the effective field Larmor fre-
quency� to change linearly across space. More interestingly,
when the gradient field adds to an effective field already
tilted away from the z-axis, the adiabatic precession fre-
quency will change according to a nonlinear function of G
and r �Fig. 2�b��. We will focus on the characterization and

optimization of this nonlinear response to the applied gradi-
ent, which gives shim pulses their unique properties.

In order to compensate for evolution in highly inhomo-
geneous environments, shim pulses must also apply this
phase uniformly across a wide range of resonance offsets.
Since a pulse acting in the presence of a constant gradient
cannot distinguish between intentional variations in the static
field that identify different spatial positions30 and uninten-
tional variations due to the local field offset, this means the
applied gradient amplitudes must change over time. Only
pulses employing a gradient amplitude that varies over time
can exhibit a different functional dependence on r versus �.
Independent modulation of the different gradients will simi-
larly decouple the x, y, and z dependences. This simple trick
has, to our knowledge, only been applied in one previous
example.25

Although gradient modulation thus allows for extraordi-
nary flexibility, it also poses a problem. The net effective
field strengths corresponding to different offset isochromats
must necessarily depend differently on the spatial coordi-
nates �see Fig. 2�c��. In order to develop a useful solution,
one must minimize this complicated interaction between the
offset and spatial dependences.

Therefore, we examine a regime where the gradients per-
turbatively affect the resulting phase. Two facts support this
choice. In the limit of very large gradient fields �approaching
the strength of the effective field�, large changes to the z
component of the effective field will prevent the slow reori-
entation of the effective field and disrupt the adiabatic inver-
sion of the spins, thus rendering the pulses useless. Mean-
while, in the opposite extreme, the phase will respond
linearly to the application of a gradient—of any time
dependence—whose magnitude approaches zero, and will
therefore only exhibit a linear spatial dependence. The inter-
mediate, perturbative approach represents a good compro-
mise since it can simplify the spatial and offset dependences,
separate them into a limited number of terms, and adjust the
relative magnitude of these terms to generate corrections
shaped similarly to those of a shim stack.

The Taylor–Maclaurin expansion of Eq. �4� expresses
this idea more concretely. This expansion,

��r,�� = �
n�=0

�

�
nx=0

�

�
ny=0

�

�
nz=0

� �� �n�

��n�

�nx

�xnx

�ny

�yny

�nz

�znz
��r,���

r=�=0

�n�xnxynyznz

n� ! nx ! ny ! nz!
� , �6�

breaks the spatial and offset dependence of the phase into a
sum of monomials of ri and �. Specifically, the monomial
term f of orders ni in space and order n� in local offset will
be

f�r,�� = �
cf

tf
��

�
�n�

xnxynyznz,

where

tf = n� ! nx ! ny ! nz ! ,

cf = 	
0

tp �� �N�Beff�
�Beff,z

N �
r=�=0

Gx
nxGy

nyGz
nz
dt , �7�

(c)

(b)(a)

FIG. 2. Here, a gradient waveform �green�, whose magnitude will scale
proportionally to its position in space, adds to the effective field of an AFP
�blue through orange�. The gradient field will perturb the magnitude of the
effective field, and therefore the adiabatic precession frequency, as shown in
�b�. This perturbation is a nonlinear function of r, which allows for the
complicated spatial dependence of the phase applied by shim pulses. Such a
modified adiabatic passage will apply a net phase proportional to the sum of
the net effective field at all time points during the pulse. �c� illustrates the
nature of this process for three different isochromats. This schematic makes
it possible to see how the higher order spatial dependence for each offset is
necessarily different, and why constraining the perturbation to smaller val-
ues, and therefore lower order spatial dependence, is a sensible scheme.
�Note that the coordinates indicated in the figures are in the rotating frame.�
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N = n� + nx + ny + nz,

and we have noted that Beff,z is linear with respect to all the
gradient fields. We choose smaller gradient amplitudes, such
that the coefficients cf corresponding to high-order interac-
tions between the gradient and the offset will vanish. The
coefficients cf for the remaining lower order monomial terms
reduce to simple overlap integrals between the corresponding
gradient waveforms and the response functions
�N�Beff� /�Beff,z

N �r=�=0, corresponding to the net order N of the
monomial. For example,

cz2 = 	
0

tp � �2�Beff�
�Beff,z

2 �
r=�=0

Gz
2�t�dt ,

cz� = 	
0

tp � �2�Beff�
�Beff,z

2 �
r=�=0

Gz�t�dt ,

�8�

cxy = 	
0

tp � �2�Beff�
�Beff,z

2 �
r=�=0

Gx�t�Gy�t�dt ,

cz3 = 	
0

tp � �3�Beff�
�Beff,z

3 �
r=�=0

Gz
3�t�dt .

Therefore, the calculation of only a handful of response func-
tions will provide a direct mapping between the gradient
waveforms and the monomials that make up the corrective
phases. �Note that only two response functions yield four
coefficients above.�

As covered Secs. III and IV, by forcing undesirable mo-
nomial terms to vanish, one can eliminate most of the offset
dependence or other undesired lower order contributions.
This procedure can tailor appropriate corrective phases for a
variety of different inhomogeneities.

D. Incorporation of rf matching effects

An adiabatic hardware matching pulse differs from a
typical ADP in that a multiplicative factor 	 perturbs the rf
amplitude of one of the adiabatic passages,24 changing the
net x component of the effective field from Eq. �3� to

Beff,x = �1 + 	��1 −
�B1�r�
B1,max

�A�t�B1,max. �9�

Figure 3 provides a geometrical illustration of how the per-
turbation applied by the pulse scaling will add to the effec-
tive field in a primarily linear fashion.

An adiabatic hardware matching pulse will therefore ap-
ply a phase with a spatial dependence of the form31

��r� = ��0� − �	
�B1�r�
B1,max

c	�B1
+ O�	2 �B1

B1,max
� . �10�

Reasoning parallel to that which leads to Eq. �8� will also
give the coefficient for the dominant hardware matching mo-
nomial

c	�B1
= B1,max	

0

tp � � �Beff�
�Beff,x

�
	=�B1=0

A�t�dt . �11�

As the dominant monomial scales linearly with the rf gradi-
ent, it will produce a larger effect than the second �and
higher� order effects that shim pulses are designed to pro-
duce.

We must address two practical concerns in order to com-
plete the derivation of the theory that leads to combined
shimmed matching pulses. First, shimmed matching pulses
will be applied in the presence of an inhomogeneous rf field,
and the shim pulse portion of the phase applied must there-
fore exhibit insensitivity to rf misset �i.e., miscalibration or
spatial inhomogeneity of the rf� as well as offset. For this
purpose, we will view �B1 /B1,max as an rf misset parameter
and eliminate spatial-mismatch cross terms �Table II� in the
same fashion we eliminate spatial-offset terms �Eq. �8� and
Table I�. In Sec. IV we have also restricted the gradient

FIG. 3. Here, scaling of the rf waveform generates a change to the effective
field 	�1−�B1�r� /B1,max�B1,maxA�t�, illustrated by the brown arrows. Note
how, especially in the low scaling limit, the change in the effective field
magnitude will be primarily linear.

TABLE I. Sample set of orthogonalization that generates a z2 shim pulse
waveform. In order to zero the coefficient in the left column, the waveform
in the middle column is made orthogonal to the function in the right column.
Note that both the middle and right columns are functions of time only.

Coefficient Gradient waveform Orthogonal to

cy Gy
��Beff�
�Beff,z

cx Gx
��Beff�
�Beff,z

cy� Gy

�2�Beff�
�Beff,z

2

cx� Gx

�2�Beff�
�Beff,z

2

cxy Gx Gy

�2�Beff�
�Beff,z

2

cxy� Gx
Gy

�3�Beff�
�Beff,z

3
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waveform to only one of the adiabatic passages; this prevents
the appearance of unwanted shim-matching cross terms.

E. Coordinate translation

Previously,25 shim pulse corrections were centered about
the point where the applied gradient fields pass through zero.
However, in many practical cases, a shimmed matching cor-
rection will function far more optimally with the gradient-
generated portion of the correction centered about a different
point. Specifically, a translation of the center of the spatial
coordinates by c would result in a z component of the effec-
tive field of the form

�Beff,z = � + ��r − c� · G�t� − �swF�t�

= � + �r · G�t� − ��swF�t� + �c · G�t��

new frequency modulation

. �12�

Therefore, by augmenting the frequency modulation function
of the rf pulse by �c ·G�t�, one can translate the center of the
spatial coordinates by c. This shift in the position of the
applied gradient-derived shimming phases relative to the rf
gradient-derived matching phases allows the generation of a
very wide variety of resulting phase profiles. Addition of a
shimming correction to a matching correction can now pro-
duce not just one, but a variety of differently shaped correc-
tive phases.

III. PULSE OPTIMIZATION

As the first step of the optimization of a new shim pulse
or shimmed matching pulse, we chose an appropriate ADP
sequence. In the examples shown here, we adjusted the pa-
rameters of a sech/tanh ADP to yield a compromise between
a reasonably short pulse length given the available rf power
and a broadband double inversion with limited residual
phase �i.e., high fidelity�. More information on the operation
and optimization of adiabatic passages has been described in
detail elsewhere.8,28

The actual calculation of shim and shimmed hardware
matching pulses reduces to a simple, rapid procedure. The
first order response functions in Eq. �7� are given by

� �Beff�
�Beff,z

= Beff,zI ,

� �Beff�
�Beff,x

= Beff,xI , �13�

where I= �Beff�−1=1 /
Beff,x
2 +Beff,z

2 . We then group each sub-
sequent higher order response function into a product of I
and a term R, which contains some polynomial of lower
order response functions. Simple algebraic manipulations
will then demonstrate the recursion relations

��RIn�
�Beff,z

= I� �R

�Beff,z
In−1 − nBeff,zI�RIn�
 , �14�

��RIn�
�Beff,x

= I� �R

�Beff,x
In−1 − nBeff,xI�RIn�
 , �15�

which rapidly provide the analytical expressions for various
response functions.

The calculation of these functions allows the algorithm
to eliminate the undesirable monomial terms first order in
one or more of the gradient waveforms, thus rapidly optimiz-
ing the waveform. Specifically, Gram–Schmidt orthogonal-
ization chooses gradient waveforms orthogonal to the re-
mainder of the appropriate integral expression in Eq. �7�. For
example, to generate a correction suitable for an x2+y2 inho-
mogeneity, the computer algorithm will zero all the dominant
monomial terms except the x2 and y2 terms by choosing gra-
dient waveforms orthogonal to functions listed in Table I. In
a similar manner, orthogonalization can also remove the mis-
match terms �Table II�. If one wishes to effect only a partial
elimination of a certain monomial, a properly scaled version
of the waveform orthogonalized against �column 3 of Tables
I and II� can then be added to the result of the orthogonal-
ization procedure.

Finally, we note that the second-order spatial term for a
given adiabatic passage is always positive. Therefore, the
most trivial example of a third-order shim pulse will employ
properly orthogonalized gradient waveforms on both adia-
batic passages with an identical magnitude but opposite sign.

Once it incorporates all the features previously men-
tioned, the entire optimization procedure takes the following
form:

�1� Optimize an unmodified sech/tanh ADP.
�2� Calculate analytical expressions for a limited number

of lower order response functions.
�3� Use Eq. �14� and �15� to generate a table of discretized

response functions, as in Tables I and II, column 3.
�4� Generate “orthogonal waveforms” by orthogonalizing

functions in the second column of Tables I and II
against functions in third column.

�5� To achieve limited but nonzero coefficients in Tables I
and II, the gradient waveform consists of a weighted
sum of the orthogonal waveform and a “nonorthogonal
waveform” proportional to the third column.

TABLE II. Example of orthogonalization used to generate insensitivity to
mismatch �analogous to Table I�.

Coefficient Gradient waveform Orthogonal to

cx�B1
Gx A

�2�Beff�
�Beff,z � Beff,x

cy�B1
Gy A

�2�Beff�
�Beff,z � Beff,x

cx�B1� Gx A
�3�Beff�

�2Beff,z � Beff,x

cy�B1� Gy A
�3�Beff�

�2Beff,z � Beff,x

cxy�B1
Gy

GxA
�3�Beff�

�2Beff,z � Beff,x
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�6� For third-order corrections, duplicate waveforms across
both passages and negate one.

�7� Solve algebraic equations to scale the orthogonal and
nonorthogonal components of all gradient waveforms
and achieve the desired relative weighting of the mo-
nomial coefficients of interest.

�8� Add the appropriate gradient waveforms to the fre-
quency modulation waveform to effect any desired co-
ordinate translation, as in Eq. �12�.

With computer software such as MATLAB �The Math-
works, Natick, MA�, the calculation of the desired wave-
forms and generation of appropriate spectrometer waveform
files takes only seconds. Finally, a simulation of the time
evolution was performed to test the gradient waveform gen-
erated in this fashion.

IV. EXPERIMENTS

A. One-dimensional example

A sample of 10% �by volume� isopropyl alcohol in D2O
was placed in a 5 mm NMR tube inserted in a Bruker 7 T
magnet operated with a Bruker Avance 300 MHz spectrom-
eter. The rf power corresponded to a proton nutation fre-
quency of approximately 25 kHz. The probe had been modi-
fied so that the center of the rf coil was slightly offset with
respect to the center of z-axis gradient coils.

We tested the corrective phase applied by these pulses
with a novel analog of a field-mapping experiment. As a
faster alternative to a full phase-encoding experiment,25 three
experiments were run. In the first experiment, a precession
interval separated the two adiabatic passages of a shimmed
matching pulse. This generated an adiabatic echo; an ap-
proximately 5 G/cm frequency encoding gradient encoded
the resulting signal, as shown in Fig. 4�b�. In the second,
“baseline image” experiment, an unaltered ADP acted as the
adiabatic echo pulse; the signal was frequency encoded but
has no net z-rotation applied by the pulse. Throughout these
experiments, the isopropanol spectrum provided spins with
primarily two different frequencies for each point in space.
These allowed a limited demonstration of the pulse robust-
ness, but interfered with the frequency encoding. Therefore,
the third and final experiment provided a spectral baseline;
neither frequency encoding gradients during acquisition nor
any net z-rotation applied by the ADP influenced the signal.

This process thus constructed a spatial map of the phase
that the corrective pulse applies. Two sets of imaging data
were acquired: the first experiment, where a corrective pulse
contributes to the signal phase, and the baseline experiment,
where it does not. Fourier transformation of the signals
yielded two one-dimensional �1D� images. For each point in
space, the difference between the phases of these two images
then yielded the phase applied by the corrective pulse. Fur-
thermore, deconvolution �by complex division in the time
domain� of the spectral baseline removed the effect of the
chemical shift on this image.

This technique verified two novel results: the combina-
tion of hardware matching effects with shim pulse effects
and a third-order shim pulse that was translated by varying

amounts. Figure 5 plots the phase differences acquired by the
experiments that verify the combination of matching and
shimming. One experiment �shown in blue� demonstrates the
phase applied by a simple matching pulse24 and corresponds
to the rf amplitude in the distorted imaging gradient field.
The other experiment �shown in violet� demonstrates the first
combination of rf-derived corrective effects with nonlinear
imaging gradient-derived �i.e., shim pulse� effects in a single
ADP. Finally, an experiment determined the phase of the
corresponding shim pulse—without matching effects; the re-
sulting phase was subtracted from that of the combined pulse
to demonstrate that the residual phase can be attributed en-
tirely to desirable matching effects �shown in red�.

Figure 6 demonstrates the phase of a shim pulse, similar
in effect to shim pulses previously generated.25 This ex-
ample, however, yields the first demonstration of a third-
order correction and also demonstrates the coordinate-center
translation of Eq. �12�.

FIG. 4. �a� Schematic of the experimental setup, showing the direction of
the applied gradients and rf field. �b� Pulse sequence for the 1D experiment,
where different chemical shifts probe for offset robustness in a qualitative
fashion. The adiabatic pulses are both amplitude �shown� and frequency �not
shown� modulated. The gradient waveform consists of a waveform simulta-
neous with the rf pulse, for the shim pulse, in addition to a standard fre-
quency encoding. Both these elements, as well as the rf amplitude scaling 	,
are removed for various reference scans, as explained in the text. �c� 2D
pulse sequence, where an additional imaging gradient Gy directly probes
offset robustness, while the phase encoding along the z direction provides an
imaging dimension to map the phase applied along the z direction by the
pulse.
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B. Two-dimensional example

To explicitly demonstrate the offset robustness of these
pulses, as well as their versatility on different commercial
systems, we ran experiments on a sample consisting of a
mixture of 10% H2O and 90% D2O on a Varian Inova 300
MHz spectrometer. The rf field strength employed corre-
sponded to a proton nutation frequency of approximately 8
kHz. As shown by Fig. 4�c�, a gradient acted along the y
direction for the duration of the experiment �except during
the relaxation delay�, and phase encoding replaced the fre-
quency encoding of the 1D experiment. The reduced experi-
ment time of the two-shot phase mapping method demon-
strated here allows for the addition of an extra dimension.

This extra dimension provides a precise demonstration of the
pulses’ insensitivity to offset, as shown in Figs. 7�a�–7�c�.
For completeness, and to verify that the shim pulse wave-
forms employed were the waveforms required by the simu-
lations, the k-space trajectory of the gradient waveform was
mapped by phase encoding on the same channel without the
simultaneous application of the rf waveform.

V. SIMULATIONS

These experimental demonstrations of the effects of
shimmed matching pulses allow us to better simulate their
performance in a mobile MR setup and to address some
problems that may arise in their application. We focus on the
results from the two-dimensional �2D� experiment for two
reasons. Primarily, these experiments explicitly ensure that
the pulses will act uniformly over the given offset range.
Much lower power ��1/10� rf pulses were also used in this
experiment; the pulses are therefore longer and represent a
greater challenge in terms of relaxation during the pulse.

Three separate resonance frequencies, separated appro-
priately for proton chemical shifts at 10 MHz, were chosen.
The simulation of Figs. 8�a� and 8�b� focused on the ability
of a shim pulse to correct inhomogeneities under these cir-
cumstances. It compared the resulting chemical shift spec-
trum under three different situations: evolution in a homoge-
neous environment with standard T2 relaxation, evolution
under an inhomogeneous field with an inhomogeneity suit-
able for correction by the phase shown in Fig. 7�c�, and
evolution without the effects of the inhomogeneous field but
with an added period of relaxation for each acquisition point.
The first situation corresponds to signal acquired in a homo-
geneous magnetic field, the second situation corresponds to
signal acquired in an inhomogeneous field without correc-
tion, and the final situation corresponds to signal in the same
inhomogeneous field, corrected by a pulse with only the z2

shim portion of the phase experimentally demonstrated in
Sec. IV �Fig. 7�c��.

The sum of a set of 1000 signals corresponding to evo-
lution under fields offset by 0–6 ppm of z2 inhomogeneity

FIG. 5. Demonstration of the additive combination of matching and shim-
ming in one dimension. The hardware-matching-only phase is plotted in
blue, phase from the shimmed matching pulse is plotted in violet, and the
difference between shimmed matching and shimming-only phases is plotted
in red. �The intensity of the data points indicates the level of signal attenu-
ation, with full opacity indicating no attenuation.� This demonstrates that the
shimming and matching corrections can in fact be combined additively by a
single pulse. Note that the location of the additive shim correction relative to
the shimmed matching correction was adjusted through coordinate
translation.

FIG. 6. A demonstration of a z3 shaped shim pulse, which also demonstrates the use of Eq. �12� to translate the center of the applied phase by three different
values.
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approximated the inhomogeneous signal. The additional re-
laxation during the corrective pulse was conservatively ap-
proximated as an additional period of T2 relaxation �without
chemical shift evolution� as long as the pulse length. At a
longer T2, simulations predict the recovery of signal by the
corrective pulses �Fig. 8�a��. The simulations also highlight a
problem that occurs in the event of faster T2 values: the
relaxation during the corrective pulse overwhelms the signal
recovery due to the correction �Fig. 8�b��.

Thus, these simulations underscore a fundamental limi-
tation of adiabatic ex situ correction pulses in general �in-
cluding those types previously published�; namely, in order
to recover more signal from rephasing than they lose due to
relaxation, the pulses must supply a sufficiently large correc-
tion within a sufficiently short time. This relation, phrased
succinctly in terms of the pulse length tpulse, the time constant
for relaxation during the pulse Tp, time between acquisitions
tdw, and the time constant for the decay the inhomogeneity
imposes on the signal envelope32 T2

†, becomes

tpulse

Tp



tdw

T2
† . �16�

Note that Tp will remain roughly similar for all ADPs, mean-

ing that the success of a corrective pulse will rely primarily
not on the absolute strength of the correction applied, but on
the product of tpulse and T2

† or, equivalently, the average rate
at which the pulse applies the corrective phase. For any situ-
ation that satisfies Eq. �16�, additional signal can always be
recovered. On the other hand, when this condition is vio-
lated, the dephasing due to relaxation will always exceed the
rephasing supplied by the corrective pulses, and can never be
recovered, regardless of the acquisition scheme or the abso-
lute length or strength of the pulses applied. Figures 8�b� and
8�d� �as compared with Figs. 8�c� and 8�a�� demonstrate an
example of this inability to recover signal.

Finally, Figs. 8�c� and 8�d� demonstrate, on the one
hand, how the addition of hardware matching effects can
allow the pulses to correct for significantly greater inhomo-
geneity; in this example, an additional inhomogeneity of
0–27 ppm dephases the spins along a direction orthogonal to
z and is compensated by a phase the same order of magni-
tude as the hardware matching phase of Fig. 7�a�. On the
other hand, these simulations also demonstrate how a pulse
that employs only hardware matching results in a signal sig-
nificantly inferior to that resulting from the combination of
matching and shimming effects in the same pulse.

FIG. 7. The experiment of Fig. 4�c� was run with both the corrective �i.e., shim, matching, or shimmed matching pulses� and unaltered versions of the ADP.
The resulting phase difference, plotted as variations in color �d�, is mapped as a function of both the spatial z-coordinate and the local offset frequency. The
experimental results shown here demonstrate both matching �a� and its combination with a second-order shim pulse �b� in an offset robust fashion. Plot �c�
demonstrates that when the phase applied by the rf matching-only pulse is subtracted from the phase applied by the combined shimmed matching pulse, a pure
parabolic shimming phase remains over an 8 kHz bandwidth. In these plots, the intensity of the pixels represents the intensity of the image signal, while the
colors indicate the phase encoded by the corrective pulses. The units of both the static gradient strength and the local field offset are given relative to the
magnitude of the rf field.
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VI. QUANTIFICATION OF PULSE PERFORMANCE

Various researchers have previously simulated and ap-
plied a variety of robust corrective pulses.24,25,33,34 Given the
fact that various different acquisition schemes with various
different strengths and weaknesses have been presented �e.g.,
stroboscopic correction versus correction along an indirect
dimension�,16,17,20,33 and one can choose the optimal scheme
for a given application from among these, one would also
like to compare the amount of chemical shift resolution at-
tainable with the different types of pulses. Unfortunately,
such a direct comparison is not possible. The rotations ap-
plied by corrective pulses do not scale with increasing field
strengths, as do chemical shifts, and so the same correction
will provide a more meaningful gain in terms of chemical
shift resolution at lower field. This issue, as well as the issue

of the scaling of J-couplings,20 has been addressed by previ-
ous publications. However, the performance of a specific
type of corrective pulse will also vary greatly depending on
the details of the experimental setup, and this issue has not
been addressed.

The existing literature does not present the performance
of corrective pulses in terms of units that allow a uniform
comparison between different pulse types implemented in
different experimental setups. However, by employing ex-
periments �like those presented in Sec. IV of this paper� to
collect a set of performance measures in the proper units, as
outlined in this section, one can predict the amount of signal
recovery possible with a given type of corrective pulse under
a wide variety of different experimental conditions.

The following analysis develops naive measures of the

(b)(a)

(c) (d)

FIG. 8. Simulation of stroboscopic correction for two different relaxation time constants. The black, green, and red lines, respectively, represent simulations
of spectra taken in a homogeneous field, an inhomogeneous field, and in an inhomogeneous field with correction. The top figures only incorporate a z2

inhomogeneity, while the lower figures also incorporate a linear x inhomogeneity 9/2 as large, intended for correction by hardware matching methods. In the
lower figures, the additional blue line represents a partial correction �incorporating matching but not shim pulse corrections�, while the red line represents the
full shimmed matching correction. Note how the shimmed matching correction gives dramatically more signal to noise and resolution than the matching-only
correction, despite the fact that the maximum rotation supplied by the shimming correction is significantly smaller than that given by the matching correction.
Note also how both the upper and lower figures demonstrate how relaxation during the pulses can compete with the pulses’ ability to refocus the signal.
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strength of the correction and of the pulses’ robustness into
what we term as the “corrective rate performance parameter”
and “bandwidth performance parameter.” It concludes with
additional measures of the efficiency with which these pulses
take the applied gradient strengths available and employ
them to generate such corrections. Afterward, we apply this
analysis to pulses previously presented in the literature, as
well as the pulses presented here.

A. Initial analysis

The size of the corrective rotation �in radians, degrees,
or cycles� will determine the strength of the correction ap-
plied by a corrective pulse, i.e.,

�max = tdw��B0,max. �17�

�The maxima are maxima across the volume of the sample.�
Here, � is the strength of the corrective pulse, which can
correct tdw of inhomogeneous evolution in a field with inho-
mogeneity �B0.

The bandwidth of offsets over which the pulse acts uni-
formly, ��, provides an equally �or more� important mea-
sure of the pulse’s performance. In the absence of relaxation
and diffusion, the successive repetition of an offset-
independent pulse could achieve arbitrarily large corrections;
in this limit, the size of the net correction would be limited
by the bandwidth of the pulse rather than its corrective
strength.

B. Uniform field scaling

In reality, relaxation and diffusion in the presence of a
gradient do occur during a pulse. As demonstrated in Sec. V,
this irreversible attenuation competes with the ability of a
corrective pulse to refocus signal. A shorter pulse will, there-
fore, be more generally desirable. Corrective strength and
bandwidth, as described above, neglect this important point
and so do not suitably measure pulse performance.

A simple manipulation can aid the search for shorter
pulses by predictably and arbitrarily reducing the length of
any composite pulse. Specifically, a uniform scaling of
1 / tpulse and the fields applied during a pulse �� /� ,B1 ,r ·G�
will leave the resulting net rotation unchanged. This “uni-
form field scaling” will play a central role in our character-
ization of pulses.

The literature already routinely refers to the relative off-
set bandwidth Q�,

Q� =
��

�B1,max
. �18�

This remains constant during uniform field scaling and is
important because it is limited for most kinds of rf pulses.
However, in the case of adiabatic pulses, it is not limited, as
longer pulses can give larger relative offset bandwidths. For
instance, one can easily double the total relative bandwidth
of an adiabatic pulse; by taking twice the amount of time to
sweep over that bandwidth, the adiabaticity, and therefore,
the fidelity of the pulse, remains constant. Therefore, we also
refer to relative bandwidth sweep rate, �� /�B1,maxtpulse.

Similarly, uniform field scaling also preserves the angle
of the corrective rotation ��r ·G /B1,max� at each value of the
relative gradient strength, r ·G /B1,max. However, the repeti-
tion of any corrective pulse will also amplify the corrective
rotation; therefore, as already alluded to by Eq. �16�, we will
find it more interesting to refer to the corrective rate,
��r ·G /B1,max� / tpulse.

C. Limited rf amplitude

As previously stated, certain types of pulses will not be
able to exceed a specific relative offset bandwidth, and so it
will remain a useful measure of pulse performance. We de-
velop two more standardized measures of pulse performance
by noting that shorter pulses require correspondingly larger
power to reproduce the same effect as longer pulses. The
maximum rf power available will, therefore, limit the mini-
mum pulse length, which in turn limits the bandwidth sweep
rate and corrective rate.

Dividing the angle of corrective rotation by this mini-
mum pulse length and subsequently finding the ratio to the
available rf amplitude yields the �dimensionless� corrective
rate performance parameter

Pcorr =
��r · G/B1,max�

�B1,maxtpulse
, �19�

which, in concert with the bandwidth performance parameter

P� =
��

�2B1,max
2 tpulse

, �20�

most accurately quantifies the ability of a given pulse shape
to correct for inhomogeneities under a variety of experimen-
tal circumstances, where different amounts of rf power are
available �Table III�.

It is interesting to note that although we have not called
upon adiabaticity in the derivation of these performance pa-
rameters, the same concepts used to derive offset indepen-
dent adiabaticity8 will lead to the conclusion that the band-
width performance parameter �after incorporation of an
additional offset to �� to accommodate any gradients ap-
plied during the pulse� remains preserved for offset indepen-
dent pulses of similar adiabaticity.

For the interested reader, an example, for the case of
stroboscopic pulses, detailing how performance parameters
could be included into a calculation of the impact of correc-
tive pulses on the signal is included in the Appendix.

D. Efficiency

Finally, a simple measure of corrective rate performance
will not suffice for some purposes, since its maximum mag-
nitude will scale with the strength of the applied gradients
available. Rather, one may require a measure of the effi-
ciency with which pulses utilize the available applied gradi-
ent strength in order to generate corrective phase.

Although this work focuses on the development of adia-
batic corrective pulses, even in the nonadiabatic case, the
individual rotations �i.e., pulse slices� that contribute to a
gradient-based �i.e., “shim pulse” type� correction do not de-
pend on r and G /B1,max except as the product r ·G /B1,max.
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Therefore, their composite effect can be broken down into a
series similar in form to Eq. �7� �although the general case
will depend nonlinearly on time�. The corrective rate perfor-
mance parameter will depend on r ·G /B1,max as

�21�

Assuming a pulse is designed to supply only an Nth order
monomial term, ��NPcorr /��r ·G /B1,max�N� is a constant. In
truth, this analysis ignores the presence of competing spatial
monomial terms and spatial-offset cross terms and, therefore,
the decreased fidelity of a pulse at higher gradient strengths.
However, despite this, the appropriate Nth order coefficient
�i.e., the “Nth order efficiency”� measures how efficiently the
pulse employs the available relative gradient strength to gen-
erate the desired monomial term and serves as an accurate
measure of efficiency.

E. Application to specific methods

Here, we give an example of our standardization by ap-
plying it to previous corrective methods as well as the meth-
ods presented here. The original demonstration of shim
pulses employed pulses with a total length of 1 ms at a B1

strength corresponding to a proton 90° pulse width of 10 �s
and a gradient strength of �0.025 T/m across �0.5 cm, to

give a phase change of 1 rad.25 The first three quantities
convert to a maximum relative gradient field strength of 0.21
and a pulse length corresponding to 157.08 rad of proton
nutation at the maximum rf strength. This gives a corrective
rate performance parameter of 6.4
10−3 and a second-order
gradient efficiency of 0.14. The offset bandwidth is designed
to be �3.5 kHz, corresponding to a relative offset of 0.14;
therefore, the pulses operate uniformly across a relative
bandwidth performance parameter of 1.78
10−3 rad−1 �see
Table IV for a summary of performance parameters listed in
this section�.

By comparison, the original simulations of adiabatic
hardware matching pulses employ a total pulse length of 32
ms to give a z-rotation that differs by 100 rad between 5 and
20 kHz �B1.24 The pulse applies this phase uniformly over
an offset bandwidth of �50 kHz. Taking the maximum rf
strength as the nominal rf strength, this corresponds to a
corrective rate of 2.5
10−2 over a bandwidth performance
parameter of 2.48
10−3 rad−1. Thus, we have determined
that, where the rf field falls off to zero, these pulses, which
are chosen conceptually, without the need for computer op-
timizations, will supply phase at a faster rate than a fully
optimized shim pulse. This remains true regardless of the
total rf power available to the system.

Similarly we reference these more recent methods
against composite z-rotation pulses,16 which apply a
z-rotation that varies by 22 rad as �B1 ranges from 15 to 18
kHz; these rotations are applied consistently over an offset
range of �15 kHz. The pulse length in this case will corre-
spond to 25 rad of proton nutation,35 giving a corrective rate
of 0.88. This, together with the bandwidth performance pa-
rameter of 3.6
10−2 rad−1, indicates that these pulses uti-
lize time rather efficiently. However, they were abandoned

TABLE III. The various quality measures remain constant under uniform field scaling. In order to express the desirability of shorter pulses, they can be
converted into rates by dividing by the pulse length. Finally, they can be converted to performance parameters by normalizing out the available rf strength of
the given experimental setup. The various order terms of Pcorr give the efficiency of the gradient usage.

Quality measures Rates Performance parameters

Corrective strength �max� r · G

B1,max
� �rad�

�max� r · G

B1,max
�

tpulse
�rad/s� Pcorr =

�max� r · G

B1,max
�

�B1,maxtpulse

Relative offset bandwidth Q� =
��

�B1,max

��

�B1,maxtpulse
�s−1� P� =

��

�2B1,max
2 tpulse

�rad−1�

Efficiency
1

N!

�NPcorr

��r · G/B1,max�N =
�N�r · G/B1,max�B1,max

N−1

�r · G�N�tpulse

TABLE IV. The corrective rate performance parameter and relative bandwidth performance parameter of,
respectively, basic composite z-rotation pulses, the original demonstration of adiabatic hardware matching
pulses, the original demonstration of shim pulses, and the shim portion of the shimmed matching pulses
presented here. Note that z-rotation pulses are also limited to a relative offset bandwidth of 0.90.

Corrective rate, Pcorr Bandwidth performance, P�

z-rotation pulses 0.88 3.6
10−2 rad−1

Hardware matching pulses 2.5
10−2 2.48
10−3 rad−1

Grid-optimized shim pulses 6.4
10−3 1.78
10−3 rad−1

Pulses optimized on-the-fly 1.8
10−3 2.9
10−3 rad−1
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since they were fundamentally limited to a relative offset—in
this case 0.90—which is far less than the relative offset of
5/2 given for this example of the adiabatic hardware match-
ing pulses. The importance of the need for a completely flat
offset dependence whose bandwidth can increase with in-
creasing pulse length cannot be overemphasized for the case
of strongly inhomogeneous systems.

Finally, the pulses demonstrated here have a net pulse
length of 703.72 rad of proton nutation and generate a phase
change of 1.26 rad per pulse, which corresponds to a correc-
tive rate performance parameter of 1.8
10−3. The relative
gradient strength was approximately 0.7 at maximum, which
indicates an efficiency of 3.0
10−3 while generating the
second-order correction. These pulses exhibit insensitivity to
offset over a range of � /�B1= �0.6, which corresponds to a
bandwidth sweep rate of 2.9
10−3 rad−1. See Table IV for a
summary of comparison of this to the performance of other
ex situ pulses.

VII. DISCUSSION

MR systems with inhomogeneous fields have proven in-
creasingly valuable, as they offer increased portability at dra-
matically diminished costs relative to traditional systems.
Two strategies can correct the effects of these inhomogene-
ities and allow recovery of chemical shifts and, thus, a fully
functional MR implementation. The first method, that of cor-
recting field inhomogeneities by means of hardware shims,
has recently proven very successful in specific applications.5

An alternative strategy, which employs customized pulse se-
quences to achieve such corrections, could lead to a more
robust and widely applicable method for recovering chemical
shifts, as it relies on a minimal number of hardware compo-
nents. This strategy met with initial success in model
systems16,25 and in systems with additional hardware
shimming.17 However, the design of improved pulse se-
quences proved nontrivial. As a result, after initial rapid suc-
cess, the further advancement of corrective pulse methods
designed for ex situ applications has slowed somewhat due
to a perceived lack in the power or flexibility of corrective
pulses, a lack of common understanding of the physical pro-
cesses involved, the complexity of the optimization proce-
dures involved, and concern over the routine application of
such pulses on realistic spectrometer systems.

In order to justify the full characterization of practical
inhomogeneous systems and implementation of corrective
pulses on such systems, we have developed pulses tailored to
the demands of portable systems and fully characterized their
performance on a standard spectrometer system. These im-
proved methods have the potential to meet these demands
and overcome the obstacles facing current corrective pulses.
We have demonstrated how increased physical insight can
dramatically simplify the computations that calculate such
pulse waveforms. More importantly, however, we have dem-
onstrated an improved corrective scheme, which combines
the power of adiabatic matching pulses with the flexibility of
shim pulses.

Matching corrections can reduce the effective linewidth
in a standard single-sided system from hundreds of kilohertz

down to tens of, or even a single, kilohertz over volumes on
the order of 1 mL; however, even in a 0.2 T system, this
amazing improvement of one to two orders of magnitude still
leaves several thousands of parts per million inhomogeneity.
The method demonstrated here, however, can manipulate the
adjustable, spatially nonlinear corrections of shim pulses to
tweak the shape of the correction and eliminate the relatively
small, yet crucial, remaining inhomogeneity. As Fig. 8�c�
clearly demonstrates, the addition of a shimming correction
can cause a profound difference in the signal to noise of the
recovered hardware matching spectrum, despite the fact that
the nonlinear shimming effects remain quite weak relative to
the linear matching effects.36

In addition to this important step forward, these pulses
exhibit the equally important benefits of robustness to
changes in local field offset and a gradient field center posi-
tion that can be easily shifted across space. The shift in the
coordinate center will be particularly necessary in single-
sided systems, where the center of the applied gradient coor-
dinates does not necessarily fall within the sample. The
built-in offset dependence of these pulses, meanwhile, sets
them apart from other methods of pulse-based correction
�e.g., Refs. 9 and 20�. When attempting the application of
corrective pulses to full-volume, highly inhomogeneous sys-
tems, the offset robustness of pulses is by far the most diffi-
cult and also the most important parameter to improve.
Nonetheless, we have demonstrated a rather simple and con-
ceptual procedure for achieving such an offset independence,
even in the presence of complicated spatial phases.

Aside from directly addressing the previously mentioned
issues, this work also clearly demonstrates the limitations of
pulse-based inhomogeneity corrections: they are inherently
order based. As a result, more complex spatial corrections
require either more complex hardware, stronger fields, or
longer pulse lengths. To uniformly express how far we can
push these limits, we have clarified parameters to character-
ize the performance of pulses implemented under a variety of
experimental conditions. We note that the performance of the
pulses presented here is reduced from that of grid-optimized
pure shim pulses �where the phase is iteratively calculated at
various points on a spatial grid and optimized25�. In order to
accommodate an on-the-fly optimization, small gradient am-
plitudes have been used in order to eliminate higher order
terms, and the waveform is not further optimized, thus com-
promising the efficiency of the pulse. The combination with
matching pulses also implies some loss in efficiency, since
the gradients act only during a single full passage and be-
cause the optimization must also eliminate high-order mis-
match terms.

Of course, successive improvements in the corrective
rate and offset dependence of corrective pulses will serve to
further improve these pulses. The conceptual model and
means for quantifying pulse performance developed here lay
firm groundwork for such studies. Most notably, this strategy
is compatible with a more traditional grid-based optimiza-
tion. Although we have demonstrated that on-the-fly optimi-
zation is possible and that the gradient waveforms need not
be constrained to a sum of basis functions, increased effi-
ciency may be more important for a particular application. In

234506-13 Shimmed matching pulses J. Chem. Phys. 131, 234506 �2009�

Downloaded 31 Dec 2009 to 128.32.151.118. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



that case, one could represent the gradient waveform with a
basis set,25 and then optimize over the subspace orthogonal
to the undesired terms. Such a strategy could only improve
upon the efficiency exhibited by the current methodology,
while maintaining the same combination of features. Most
importantly, future work with these methods will include full
characterization of a portable system, so that we might de-
sign, adapt, and implement such corrections on that system.

Overall, we have presented a simple and direct strategy
for combining a variety of features into a single corrective
pulse. This makes these pulses more suitable for application
to truly portable ex situ systems. The combination of correc-
tion strength and correction accuracy, the improvement in the
pulse optimization rate, and the enhanced ability to experi-
mentally characterize pulse performance demonstrated here
are all critical steps toward the implementation of an adjust-
able, robust correction of inhomogeneities by means of rf
pulses. A step has certainly been made toward a system of
pulse-based inhomogeneity correction that is both practical
and general. Significantly, this step has been made based on
models and physical understanding rather than raw simula-
tion power. Furthermore, we believe that the application of
the types of pulses developed here is not limited to that of
corrective pulses and could have implications touching on
the fields of ultrafast NMR spectroscopy and MR imaging.
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APPENDIX: ANALYTICAL CALCULATION OF SIGNAL
CORRECTION BASED ON PERFORMANCE
PARAMETERS

In general, we are interested in resolving the sum of
various spectral components that constitute a NMR signal

sh�t�. We start by assuming that this signal is normalized to a
maximum amplitude of 1. In the absence of relaxation, such
a signal would not decay. However, even in a perfectly ho-
mogeneous field, relaxation broadens the peaks of the spec-
trum, resulting in a finite linewidth.

Postprocessing techniques, such as deconvolution, can,
in principle, improve the resolution of the spectrum. How-
ever, the fact that the relaxation restricts the signal within a
“signal envelope” of finite energy

Eenv = 	
0

�

exp�−
2t

T2
�dt �A1�

will impose a limit on the net signal energy generated by the
sample

E = 	
0

�

exp�−
2t

T2
��sh�t��2dt . �A2�

Because a set background of noise always accompanies the
signal, the limited signal energy will frustrate any efforts to
recover resolution by postprocessing.

Therefore, focusing on determining the resulting signal
energy, we now include the effects of corrective pulses in an
inhomogeneous field. When the sample generates signal
from within an inhomogeneous field, that field will have the
effect of multiplying the homogeneous signal by the addi-
tional envelope einh�t�,

einh�t� =
1

V
	 ei��B0�r�tdr . �A3�

Meanwhile, we note that a corrective pulse will correct for
some field shape, which may or may not be the same as the
field shape which determines einh �for instance, the latter is
the case for a matching pulse in a realistic inhomogeneous
field which does not also employ shimming corrections�;
therefore, it will effectively divide the signal by an envelope
ecorr�t�, which may or may not be the same as einh�t�. As
discussed in Sec. VI, every corrective pulse will also subject
the signal to additional randomized dispersion, which intro-
duces an additional decay estoch�t�, which cannot be removed
by any means. Furthermore, variation in the pulse rotation at
different local field offsets will result in a distortion and at-
tenuation of the signal in the frequency domain, which in
turn will be manifest as a convolution of the time domain
signal. We denote the convolution kernel resulting from this
distortion by d�t�; although we denote the offset dependent
effects here as a time-domain convolution for compactness,
their effect can be more conveniently thought of as a
frequency-dependent attenuation of the signal before correc-
tion. Therefore, the total energy of the corrected signal will
be exactly

E = 	
0

� ���einhefreesh� � d�
estoch

ecorr
�2

dt , �A4�

where efree is the dispersion due to relaxation and diffusion
during the period of free evolution. In words, as a generali-
zation of Eq. �16�, signal recovery will result when, on av-
erage, the envelope of the inhomogeneity decay that the
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pulse corrects for �ecorr� decays more rapidly than the enve-
lope of attenuation due to the relaxation and diffusion intro-
duced by the pulse �estoch�; this statement is not limited to the
case of stroboscopic acquisition. Of course, this equation
also highlights the need for a pulse with sufficient offset
robustness to avoid signal attenuation due to the convolution
by d.

If we take into account relaxation during the pulses Tp,
during a stroboscopic sequence, we obtain

estoch�t� = exp�−
rpulsingtpulset

Tp
� , �A5�

where tpulse gives the pulse length and rpulsing gives the num-
ber of pulses applied stroboscopically per unit acquisition
time. We can also incorporate the effects of diffusion if we
assume that the static field gradient is greater than the ap-
plied field gradients and approximate it by a constant value
ginh. Approximating the adiabatic passages as instantaneous
inversions,37 we then obtain

estoch�t� = exp�−
rpulsingtpulset

Tp
−

1

48
Drpulsingt�

2ginh
2 tpulse

3 � ,

�A6�

where D gives the self-diffusion constant.
The corrective rate performance parameter Pcorr, in con-

junction with the rf amplitude available in a given experi-
mental setup B1,max, will determine the amount of time re-
quired by the corrective pulses �i.e., rpulsingtpulset� per unit free
evolution time t, namely,

rpulsingtpulse =
�B0,max

B1,maxPcorr
, �A7�

where �B0,max gives the maximum field inhomogeneity
across the sample. Although it is very important to note that
offset-dependent distortions or attenuations will further com-
plicate matters, we can at this point stop to note the reso-
lution gains possible from such a correction, namely,

�fcorrected
−1

�funcorrected
−1 = �1 +

��B0,max/PcorrB1,max��1/Tp + 1/48�2Dginh
2 tpulse

2 � + 1/T2,residual
†

1/3�2g2t2 + 1/T2 + 1/T2
† �−1

, �A8�

where we have defined the resolution �f−1 as proportional to
the time constant of the decay of a signal envelope and
where T2,residual

† gives the time constant for the decay of the
envelope corresponding to einh /ecorr; we note that this can be
very large for an accurate correction such as a shimmed
matching pulse, but significantly smaller for a hardware-
matching-only correction employed in a realistic environ-
ment.

Finally, we can incorporate the parameters to describe
offset performance. For an idea of how this would work, let
us approximate the offset dependence as full correction over
the bandwidth of the pulse, and no signal elsewhere. Then

d =	 ei2�ftH�2�f − �2P�B1,max
2 tpulse�df , �A9�

where H�x� is 1 for �x��1 /2 and 0 elsewhere. In this ap-
proximation, signal from regions with inhomogeneity greater
than the pulse bandwidth will simply be lost, resulting in
signal attenuation. However, distortions can be significantly
more complicated.

We note that although the above analysis holds for the
specific case of a stroboscopic acquisition, we hope that it
helps both to satisfy the curiosity of those interested in the
effects of diffusive attenuation and to provide an example for
the straightforward application of uniform performance pa-
rameters toward predicting the amount of signal/resolution
recovery in indirect acquisition schemes.5,33
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